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Abstract

The probability distribution of the conductance p(g) of disordered 2d and 3d systems is calculated by transfer matrix
techniques. As expected, p(g) is Gaussian for extended states while for localized states it is log-normal. We find that at the
mobility edge p(g) is highly asymmetric and universal. © 2001 Elsevier Science B.V. All rights reserved.
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In the presence of disorder [1], a system may
undergo a transition from insulating to metallic
behaviour as the Fermi energy varies in an energy
range containing both localized and extended
states, seperated by a mobility edge. This transition
can be characterized either by transport properties
like, e.g. the conductance, or by properties of the
eigenstates of the system like, e.g. the correlation
length &, (approaching from the metallic side of the
transition) or the localization length £, (approach-
ing from the insulating side of the transition). While
the latter are self-averaging quantities, i.e. the en-
semble average may be used as a scaling variable,
the conductance is not [2-7]. Therefore, it is of
great importance to determine the complete prob-
ability distribution p(g) of the conductance ¢ (in
units of e*/h), especially at the critical point of the
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metal-insulator transition, as it is well known to be
a Gaussian on the metallic side and log-normal on
the insulating side. The correct form of p.(g), the
distribution of the conductance at the mobility
edge [2-7], is still not sufficiently well-known.
Using a tight-binding model [8] with diagonal
disorder, a transition from a metallic state to an
insulating one can be induced [9] in a finite-size
sample by increasing the disorder strength W. In
all our results, W is given in units of the hopping
integral. The localization length £, decreases as the
strength of the disorder, W, increases. As long as
&, is much bigger than the system size, the electron
will cross the sample with ease, thus being essential-
ly delocalized. If, on the other hand, &, is suffi-
ciently smaller than the system size, the electron
will become localized in a small region and not
contribute much to the conductance. The critical
strength of disorder W, will occur where the local-
ization length becomes comparable to the system
size. We have systematically studied the conduc-
tance g of the 2d and 3d tight-binding model by
using the transfer matrix technique, which relates
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Fig. 1. The distribution of the conductance for a square of
64 x 64 lattice sites. Small disorder (W = 3, top panel) leads to
metallic behaviour; strong disorder (W = 9, bottom panel) leads
to insulating behaviour. The values for the average and standard
deviation of the Gaussian fits are given in the graphs.

g to the transmission matrix ¢ by g = 2 Tr(¢'#). The
g defined here is for both spin orientations. Fig.
1 shows the distributions of the conductance g and
the natural logarithm of the conductance Ing for
a metallic and a localized 2d sample, respectively.
In the “metallic” regime (it is really weakly localiz-
ed, since we are working in 2d) where W = 3.0 we
have &, = 47234, which is much larger than the
system size L = 64. In the localized regime, where
W = 9.0, we have &, = 7.54, which is smaller than
the size of the system. Both distributions can be
fitted very well by a Gaussian normal distribution
[7]. Fig. 2 displays the distributions for a system
near the critical point. The distribution of Ing
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Fig. 2. The distribution of the conductance for a square system
of 64 x 64 lattice sites. The disorder was chosen such that the
localization length is close to the system size L.

shows a characteristic cut-off at Ing = 0. Only
a few samples have a conductance g > 1. This is in
agreement with analytical results [5].

Applying a strong magnetic field perpendicular
to a 2d system creates states with a diverging local-
ization length [6] even in the thermodynamical
limit, as long as the disorder is not too strong. Thus,
one can approach a critical state in such a system
by varying the energy, even though one cannot
reach a true metallic state. In Fig. 3, we have an
insulating system, the conductance distribution
again fitting well to a log-normal distribution. The
distribution for the critical state p.(g), shown in
Fig. 4, again has the abrupt cut-off at Ing =0. It
can be fitted to a skewed log-normal distribution,
which is normalized on the interval (— co; 0] rather
than all real numbers. Notice that in this case also
P.(g) is highly asymmetric and very similar to the
case shown in Fig. 2.

Comparing these results to a 3d system without
magnetic field, again varying the disorder strength
and keeping the energy fixed at E = 0.0, we find
the same qualitative picture: the distribution of the
conductance is normal on the metallic side and
log-normal on the insulating side of the transi-
tion (see Fig. 5), whereas the critical state is
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Fig. 3. The conductance distribution of a square system of
64 x 64 lattice sites. For the chosen disorder strength W = 4 and
magnetic flux « = § states at the energy E = — 3.8 are well
localized. The parameters for the Gaussian fit are given in the
graph.
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Fig. 4. The conductance distribution of a square system of
64 x 64 lattice sites. For the chosen disorder strength W = 4 and
magnetic flux o = £ states at the energy E = — 3.4 are critical.
The parameters for the fit are given in the graph.

characterized by a cut-off at Ing = 0 and a skewed
log—normal distribution for Ing < 0 (see Fig. 6).
In conclusion, our detailed numerical results
show that the probability distribution of the con-
ductance is normal for the extended regime and
log-normal for the localized regime. However, at
the mobility edge p(g) is highly asymmetric. The
form of p.(g) at the critical point is independent of
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Fig. 5. The conductance distribution of a cubic system of
10 x 10 x 10 lattice sites. Small disorder (W = 3, left panel) leads
to metallic behaviour; strong disorder (W = 30, right panel)
leads to insulating behaviour. The values for the average and
standard deviation of the Gaussian fits are given in the graphs.
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Fig. 6. The conductance distribution of a cubic system of 10
x 10 x 10 lattice sites. The disorder was chosen such that the
localization length is close to the system size L. The parameters
for the fit are given in the graph.



M. Riihldnder, C.M. Soukoulis | Physica B 296 (2001) 32-35 35

the dimensionality of the system and of the model.
This suggests that p.(g) is universal.
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