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We investigate the localization behavior of the Anderson model with anisotropic hopping intefmral
weakly coupled planes and weakly coupled chains both numerically with the transfer matrix method and
analytically within the self-consistent theory of localization. It is found that the mobility edge is independent
of the propagating direction. However, the correlatéocalizationL ;) length in the extendedocalized
side of the transition can be very different for the two directions. We find ghat?¢" and L§=tLL in
agreement with the scaling theory of localization. We discuss how this can possibly explain the transport
properties of highF, materials. The critical disordat, is found to vary as'* for weakly coupled planes and
as t¥2 for weakly coupled chains. A discrepancy with the predictions of a diagrammatic analysis on the
conductance ratio is discuss¢80163-18207)03544-3

I. INTRODUCTION isotropic system and our analysis on sufficiently large sys-
tems has revealed the following properties.

The problem of Anderson localization in anisotropic sys- (i) The metal-insulator transition is independent of the
tems has attracted considerable attertidin recent years, propagating direction.
largely due to the fact that the high. superconductors are (i) At the critical point, the geometric mean of the ratios
highly anisotropic. Transport in the normal state is metallicof the finite-size localization lengths to the width of the bar is
in the x-y plane, but appears semiconductorlike on the independent of the anisotropy. This remarkable relation
axis® The nature of the-axis transport in high+, materials ~ might underline the conformal invariance property at the
is still controversial and its understanding may have impor-Anderson transitiod?*?
tant consequences for the theories of the normal and the su- (iii) The critical disordeW, seems to vary with the an-
perconducting state. This paradoxical property has prompteigotropyt ast', in disagreement with the expected logarith-
the proposdlthat a highT, material in the normal state is mic dependence. Our diagrammatic theory of the anisotropic
actually an insulator, appearing metallic only because théocalization can provide an explanation for this remarkable
inelastic length in the plane is less than the localizatiorrelation.
length. It has also been argdédhat a negativelp/d T in the (iv) The critical exponents for the correlation and local-
z direction alone may signify anisotropic localization, with a ization length for both propagating directions are equal to
metal-insulator transition depending on the propagating dithat of the isotropic system.
rection, in direct contradiction to the predictions of the scal- (v) The difference between the correlation lengths in the
ing theory of localizatiof. A recent diagrammatic different propagating directions may possibly explain the
calculatiort lent support to such a claim. Previous diagram-normal state transport properties of the highmaterials.
matic analysis,however, led to the conclusion that the scal- We have also studied the localization behavior of weakly
ing property in anisotropic systems remains the same as thabupled chains, which simulate the one-dimensigta)) to
of the isotropic systems with a simple substitution of the3D continuous transition. We also find that the metal-
conductance by its geometric mean. Given the perturbativeasulator transition is independent of the propagating direc-
nature of all the previous work, it is important to carefully tion and that, at the critical point, the geometric mean of the
study the localization behavior of disordered anisotropic sysi,, /M for the different directions is constant, independent of
tems with reliable numerical techniques and to determinghe anisotropy. The critical disord&v. is found to behave as
whether the scaling theory is valid for highly anisotropic t*?, in agreement with previous studies and with the results
system&11 of the coherent potential approximation.

In the present work, we have systematically studied the We used the transfer-matrix and finite-size scaling tech-
localization properties of a three-dimensional disordered anniques to calculate both the conductance and the localization
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length. In Sec. Il we describe the model and the numerical
techniques we used, in Sec. Il we present and discuss our
numerical results, in Sec. IV the transport highmaterials
are discussed, in Sec. V we present our analytical work
compare with numerical results, and in Sec. VI we summ
rize the conclusions of this work.

I'=lim (Q.QN)¥%, 2

L—oo

anyith eigenvalues exp(), wherey;, j=1,2,... M2 de-
ahotes the characteristic Lyapunov exponentQpf TheM?
Lyapunov exponents of Q. are positive
(0<y1<7y,---<vym2), While the negative ones are equal to
—Y1,— Y2, ...,—ym2. The smallest of theM? positive
Lyapunov exponentg; eventually determines the slowest
tpossible exponential increase of the statelfer. There-
fore, it can be identified with the inverse of the longest ex-
rponential localization lengthy, (A= yl’l) in the quasi-1D
system of cross-sectional arit.

Scaling is made possible by varying the perpendicular
size parameteM. According to the one-parameter scaling
theory, for givenM the A\, /M should be a function o1/
only for any anisotropy hopping parameterdisorder value
W, and electronic energy stake The M-independent char-
acteristic lengthh equals the localization length=Ilim\,,
as M —co (if the states are localizedand characterizes the
extent of the largest-amplitude fluctuatidih the states are
extendedl For W>W, the ratioAy /M is expected to fall
where a lattice site is denoted by the sétn(m), with  with increasingM, while for W<W, it should instead rise.
I=1,2,...L andn,m=1,2,... M. The lattice spacing is For W=W, the ratioA /M has a value independent bf
taken equal to unity, while the diagonal random site energiegnd this behavior defines the Anderson transition point. We
€.n.m associated with every lattice sité,iG,m) are chosen make the further assumption that the scaling parameter
from a box probability distribution of mean zero and width A(E,W,t) diverges as W—W, with a power law
W. We define the direction as the propagating direction, so A\~|W—W,|~”. This defines the exponent, which is
t, is the hopping matrix element along the propagating direc¥=1.3 for the simple cubic isotropic system.
tion, whilet, andt, are the hopping integrals in theandy The Lyapunov exponents may be used directly to calcu-
directions, respectively. In the simple cubic lattice of ourlate the conductancg of a quasi-1D systeMi (in units of
tight-binding model, the hopping integrals are nonzero onlye?/h)
between nearest-neighbor sites and depend on directions in
general,t,#t,#t,. We normalize all the energies by the

II. MODEL AND NUMERICAL TECHNIQUES

We are considering a general three-dimensional tigh
binding Hamiltonian on a simple cubic lattice with one or-
bital per lattice site. The corresponding difference equatio
for the amplitudes of the wave function,, ,, written for a
bar of lengthL and square cross sectidh X M, takes the
form

(E— EI,n,m)CI,n,m:tx(Cl—l,n,m+ C +1,n,m)
+ty(cl,n—1,m+ CI,n+1,m)

+tz(CI,n,m71+ Cl,n,m+1)-

oY)

M2 >

largest hopping integral, so all the parametgrst, andt,
take values between 0 and 1.
In this work we study the cases thatis equal tot, ort, .

9 o) ®

Another way* to calculate the conductancg of a

Whent,=t,=1 ort,=t,=1 the system consists of a set of \jxcMxM cube is from the multichannel Landauer
coupled planes and the propagation takes place parallel @§,myal?

perpendicular to the planes, respectively. Whgnt,<1 or
t,=t,<1, the system consists of a set of coupled chains and
the propagation takes place perpendicular or parallel to the
chains, respectively. As a convention, we assign the direction
with the large and small hopping integral as the paralll ( wheret is the transmission matrix. The behavior of the con-
and the perpendicular() direction, respectively. We define ductancey vs M can determine the localization properties of
t as the ratio of the small hopping integral over the large onethe system similarly ta.y, /M within the localization length
sot measures the anisotropy ratio and takes values betweey), calculations. For localized state®VE&W,), g is ex-
0 and 1. pected to fall with increasingM; for extended states
First, we treat this problem of Anderson transition using(w<Ww,), g should rise; foW=W,, g is independent of
the transfer-matrix techniqudé, combined with the one- and this defines the Anderson transition point.
parameter scaling conjecture. Our mofgscribed with Eq.
(1)], is particularly suitable for the transfer-matrix approach
since the linear lattice of sizk is exceedingly larggby
orders of magnitudein comparison to the sizé1 in the Using the numerical techniques and finite-size scaling as-
perpendicular directions. In this representation, the evolutiosumption described above, we studied the Anderson transi-
of the state is described by a product of transfer matricesion in three-dimensional anisotropic systems. In Fig. 1 we
QL=H|L:1T,. For eacH, the transfer matri; connects the present our numerical results for the conductagrees/e?/h
amplitudes  ¢_ypm,Cnm With  the  amplitudes versusM, calculated by the Landauer formula given by Eq.
Clnm Cl+1nm(n,Mm=1,2,... M). The product matrixQ,  (4), for a system of weakly coupled planes. The calculation
satisfies the theorem of Oseled@mamely, that there exists is for the center of the banB=0 and the size of the cubic
a limiting matrix systemM X M X M that is used iV =5, . . .,20. Because of

2

e
G(M)= FTr(t*t), (4)

Ill. NUMERICAL RESULTS AND DISCUSSION
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FIG. 2. We plot\,, /M, as calculated through the transfer ma-
FIG. 1. Conductancg plotted as a function oM for E=0,  trix techniques, vV for E=0, t=0.1, and various values of dis-
t=0.1, and various values of disordéf, for both propagating di- orderW, for both propagating directions.
rections. The calculation is done by the multichannel Landauer for-
mula (4) for a cube of sizeV XM X M. tion than the g-=t%gl, predicted by the diagrammatic
analysi$ of the anisotropic model. This may be an indication

the non-self-averaging nature of finite-size systems, an avepf the existence of high-order corrections to the conductivity
age over many random configuratiofisp to 500 for the that is not simply proportional to the bare conductivity. This
M = 20 casgmust be taken to suppress the large fluctuationsPoint will be discussed in more detail below.

The anisotropy ratio is= 0.1 and we present results for both ~ Using the transfer-matrix technique for a long bar of
propagating directions. Notice that for propagation perpenlength L and width M XM, we obtained the localization
dicular to the planes and for disorder close to the criticalengths Ay for both directions at the center of the band

point (e_g_’W: 8) the Conductancg decreases for Smam' EZO These results are presented in Flg 2 The maximum
but it increases for |arger System sikk If we On|y use the width M of the bars that we used was 17, which is the |argest

numerical results of systems with sites up Nb=11, we width ever used for this kind of calculation. The Ieng.tlwe
would derive the result that the critical disorder in the per-used was at least 5000 and an average over 20 different
pendicular direction is different, much lower in fact than thesamples was taken in order to estimate the error in the cal-
valueW,=8.5, which is the critical disorder for propagation culation of the longest localization lengih, . The error bars
along the parallel direction. However, if we use large enougtPf the numerical data foxy, /M are less than the size of the
systems, which are difficult to obtain numericallye13  Printed points. In the figures the error bars are not explicitly
for this value of anisotropy=0.1), we clearly see that the drawn. o o

critical disorder has approximately the same valMg=8.5 The results in Fig. 2 clearly support the findings that the
in both directions. This result is also supported by the result§fitical disorder seems to b&/.=8.5 for both propagating

to be presented later, fon, /M versusM and the behavior directions. The critical disorder is defined by &hindepen-

of correlation and localization length versus disorder. Thedent Ay /M. Notice again that if only sized/<11 were
critical conductance in the two directions &t0.1 is ap-  used, which are appropriate in the isotropic case, one would

proximately ¢t~ 10~ g, which is a much stronger varia- then have erroneously concluded thigt>W- .
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In order to be able to extrapolate to the infinite system Anisotropy t=0.1
size (M —) it is necessary to investigate the scaling behav- 108 /I direction .
ior of Ay /M. It was found numerically that the function e ]
Am /M obeys a simple scaling relation of the form ] .

M _ f( : ® | -
M M /M * 8, Extended

/!
This is correct for both directions. The quantity is the | ,.é‘im e v :‘..,,"‘m — _gn....\
localization lengthL . for the localized regime ani is the
correlation lengtl€ for the extended regime. The quantities i »®
andL. are calculated by the relations I

o 6 - @
™M A ©) (O T T/ L 112
Lc/M (or& /M)

tassi T T T T T -

e Localized

M .M ,
& T (7

Anisotropy t=0.1

for extended and localized states, respectively. In cases L direction ]

@

®
where it is difficult to obtain reliable values fgr and L . ‘.
from Egs.(6) and (7), we use the fact that, /M has to I %
follow the scaling relation given by E@5). In these cases, . '..
and L. are chosen in such a way that all the raw data of Ay/M | %

Aw/M follow a universal curve. Of course, at the end we Extended

oy
make sure that the dependenceandL . on disordeW is 0.1 J.‘Jci._, ... S m‘:_ B

monotonic. The scaling functiof(x) for both directions be- ) __/ -
haves as ¥ in the limit x— 0 for extended states, while for
localized stated (x)~x in the limit x—0. This is clearly I
seen in Fig. 3, where the scaling functions for both directions ! (b)
are shown. e

From Fig. 3 we see that close to the critical transition 107! 100 10! 102
point Ay /M tends to a critical valué ;= (\y/M)., which Le/M (or &/M)
for the parallel propagating direction jsl=1.2 and for the

perpendicular propagating directioli; =0.12. The impor- FIG. 3. Renormalized localization lengthy /M vs &M (or
tant point here is that for a given energyand anisotropy L /M) for various values of disordan for E=0 andt=0.1 for the
ratiot, the critical value /M), depends on the propagat- (a) parallel and(b) perpendicular propagating direction. There are
ing directions. The values of . we obtained folE=0 and two branches in the universal curve, the upper one corresponding to
anisotropyt=0.1 suggest tha.l\é = tA‘J:. This formula is  extended states argdlM and the lower one to localized states and
indeed correct for alt’s we have examined, for weakly Lc/M. Thus mobility edges exist for both propagations and
coupled planes, and this is shown in Fig. 4. Notice that forAéztAﬂ-

weakly coupled chainsAéaétAl it rather looks like

AL=t2AL, but we have no theoretical understanding of thising arguments® is that\ |,/M = (£l/£-) f(M/£-) for the par-
relation. Since there is this strong dependencengf/M).  allel direction and two corresponding expressions for the
on the anisotropy parameters we cannot use the value gferpendicular directions. At the critical point, the geometric
(Am/M)=0.6 (which is the value for the isotropic 3D sys- mean of\y,/M is a constant, equal to the isotropic value of
tem) as a criterion for the transition point of Anderson local- 0.6.

ization. Another important relation that we were able to ob- In Fig. 6 the scaling parametegsand\ for the center of
tain is that the geometric mean of the different critical valueshe band and for anisotropy ratie=0.1 are shown, as func-
A, in the different directions is independent of the anisot-tions of the disordeW, for both directions. We see that in

Localized

103

ropy t. We derived that the extended regime whevé<W,, &' > &l. For example, at
Yoy r 21 W=5, ¢-=100 andé¢l=1.5, in units of the lattice constant,
(AcAZAL)=0.6. (8 which has been taken to be one. In the localized regime

Our results are shown in Fig. 5 for both plane and wireWhereW>W,, LL>L¢ . For example, av=10,L;~5 and
coupling. In the case of weakly coupled planes, 8).be- LQZSS. Our numerical results approximately follow the the-
comes] (A£)2A1]¥3=0.6. This relation may have important oretical prediction¥’ that ¢/=t2¢* andLg =tL]. Thet de-
consequences for the existence of conformal invariance dtendence of the ratio of the localization lengths along the
the critical point of the Anderson localization probléft®  two propagating directions also explains why =tAl for
Another more plausible explanation which is based on scalweakly coupled planes, as shown in Fig.M,=(\y /M),
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FIG. 4. RatioA:/tAl vs the anisotropy, for plane and wire
coupling. Notice thatAé=tAl is obeyed only for weakly coupled
planes.

FIG. 6. Localization lengtl. or correlation lengtl as a func-
tion of disordeW for E=0 andt=0.1, for the parallel and perpen-
dicular propagating directions. Notice that foN<W =8.0,
&> ¢l while for w>W,, LI>LL .
and since\, is a length along the parallel direction, it has to . _
scale as the localization length and therefore has the samel© obtain the last equality we have assumed thatL,
dependence. =L=M, as is the case for the numerical results of the con-

Let us discuss now the ratio of the conductances along th@uctance, where we used a cube of silexMXM. ?l_”
two propagating directions. As is clearly seen from Fig. 1 affumerical results of Fig. 6 have clearly shown tia- &' is
the critical point thagézloqgl, which is a much stronger always correct for a strongly anisotropic system. We there-

ot L2 ; - . fore have that if the size of the systdn®¢'>¢l, we can
Va”?t'qg tfhﬁ]n 9 .t ?C’ .predu(:jteld bg ;hethdlagrarlnmatlc expand both the numerator and denominator of the last ex-
analysis or the anisotropic model and by the simpie argu'pression in Eq(9) to obtain that indeeaj;i/g”zg“/&:tz.

ments presented in Ref. 19. Ttfedependence of the ratio of Tyis'is correct only in the weak disorder limit. Notice from
the conductances is only correct in the weak scatterlng;ig_ 6 that even for weak disordew=2, ¢l=1, and

soaig 19 _ __$+2
limit, *® whereg"/gl= &l/&- =t2. In general, &-=20, which is comparable to the maximum size used in
our conductance calculations. gﬁ< L<é&, Eg. (9) gives
gt exp2L /M) —1  expeLdiL?)-1 that g'/g

—= = ~(2&l/L)exp(—2&/L), which is a much stronger depen-
gl exp2L/\iy)—-1 exp2L,£'/Lf)-1 dence thant?. Similarly, if L<é&l<g', Eq. (9) gives that
exp(2£l/L)— 1 g'/gl=exp(—2&-/L), which is also a much stronger depen-
s = (99  dence than thé?. This is the reason thayézloqgi at the
exp2&-/L) -1 critical point andnot g- =t2g!.. Another point that is worth
mentioning is that the geometric mean of the conductances
of our anisotropic system is not equal to the critical conduc-

08 I ' T tanceg,. of the isotropic system, which is roughly equal to
O Plane Coupling ] 0.1 in units ofe?/h. Remember that the geometric mean of
07l A Wire Coupling Eg)e critical\y, /M is equal to a constant and is given by Eq.
— i ] We have calculated the critical exponentor the local-
Ao o ] ization length. This is done for the valde=0.1 for each of
06| 0 4 the propagating directions by utilizing the finite-size scaling
I = o . ® ansatz[Eqg. (5)]. We make the further assumption that the
scaling parametex (E,W) diverges aaW— W, from the lo-
05 ] calized side with a power lawV{—W,;)~”. We may then
’ expand the functiorf
)\M l 2
0.4 L e . ] o = ATBMI(W=We)+O((W=W)?), (10
0.01 0.1 1
Ani whereA andB are constants and
nisotropy t
df
FIG. 5. Geometric mean valug=(AXAYA%) Y vs the anisot- BMl/V:d—vJ : (11)
W,

ropy t, for plane and wire coupling.

Cc
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TABLE |. Calculated values o#, for propagation perpendicular

to the planes, for different pair§\(; ,W,) of the disordeiV close to L L S ' ]
the mobility edgew,=8.25. % {’ % ]
® 1
8k i
A W, v % {, {, ]
7.0 7.5 1.08 6 ]
7.5 8.0 1.27
7.5 8.3 1.32 Wc
7.5 8.5 1.27 4L i
8.0 8.5 1.28 . % ]
8.3 9.0 1.93 Anisotropy t=0.1
8.5 9.0 1.24 2r ‘} 7
Therefore,v is obtained as the reciprocal of the slope of the O0 1 2 3 4 5
linear relationship between[ldf/dW] at W=W, and IrM. E

For the numerical calculation of this slope we have used four

values ofM (=11,13,15,17) for the perpendicular propagat-

ing direction and three values & (=11,13,15) for the par- FIG. 7. _Dependence of_ the mobility edge of the strength of the
allel propagating direction. This is because for the parallefiagonal disordew, for anisotropyt=0.1.

propagating direction the calculations up M=15 are ) - ) o

enough in order to have a correct estimation of the varioudVotice that the shape of the mobility-edge trajectory is simi-
quantities since there is a good linear scaling behavior of thér to that oft=1 shown in Fig. 5 of Ref. 4. The=0.1

Ay /M vsM for M=11. Actually, the calculation fom =17  trajectory plotted in Fig. 7 is a little different from the one

needs really much CPU time and is at the limit of the avail-Shown in Fig. 5 of Ref. 4. In Ref. 4 the mobility-edge trajec-
able computers. tory was obtained by assuming that\{/M).=0.6 for allt.

Numerically, we calculate the derivaties/dW using the W€ now know that this is not correct and therefore the cor-
values of\ /M for two neighbor values ofV. For each pair  rect mobility-edge trajectory is the one shown in Fig. 7 of the
of W's we calculate a value of and finally we take the Present paper. Notice that fd&=0, W.=8.25, while for
mean value of them to have an estimation of thexponent ~W=1, the mobility edge is a.=4.0.
and the standard deviation as the error of the calculation
In Table | we present the pairs @f's (W, ,W,) we used and IV. TRANSPORT HIGH- T, MATERIALS
the corresponding calculated valuesudbr propagation per-

pendicular to the planes. The mean value of #hegives an The di_fference l_oetweeg” and ¢ is very important a_nd
estimation ofr" =1.34 and the standard deviatidnn=0.11  C@N Possibly explain the normal state transport propéraies

gives an estimation of the error. Similarly, in Table Il we the highT, materials. T.he correlation Ieng&m_easu'res the
present the pairs ol's and the calculated values offor strength of the fluctuations of the wave functions in the ex-

propagation parallel to the planes. The mean value ofthe tended regime. I_:or Iength scales larger thianthe wave
gives an estimation of!=1.31 and the standard deviation function looks uniform, while for length scales smaller than

gives an erron v=0.21. Within the numerical accuracy, the ¢, the wave functiqn hag strong fluctuations. Another rel-

valuesy' =1.3+0.1 andv/=1.3+0.2 are in agreement with evant Iength_scalt_a is the inelastic mean free pathwhich

the v=1.3+0.1 for the isotropic system. behaves a3 P, W.'th _p_robablyp_= 1/.2‘ Whenl;,<¢, a phe-
We have used the transfer-matrix and finite-scaling methomenon called incipient localization takes place and con-

ods to obtain the mobility-edge trajectory for0.1 for all SUC“VI'}/O'S Ic_:(tjmtrc;fl}led bydli” .t'A convenient n:;[]err')at\)lztlon
the values ofe. This is shown in Fig. 7, where the strength ormula = valid In the conducling regime near the Anderson

of the critical disordetW, versusk is shown fort=0.1. transition is given by

(a2 _
TABLE II. Calculated values ob, for propagation parallel to Tioc= (€°/%)(al £+ D/lin), (12
the planes, for different paird/N;,W,) of the disorde/W close to

- where a and b are constants of order unity. For high
the mobility edgew,=8.25.

enough temperatures the conductivity is given by the regular
metallic behavior, Whererph=wf,7/477 and the mean free

W We Y time 7~T° 1. Becauseo, and oy, describe independent
7.5 8.5 0.98 physical processes, we can add the corresponding resistivi-
8.2 9.0 1.66 ties. Thereforep=pioc+ppn, Wherep=1/o. The experi-

8.2 8.5 1.19 mental behavior of the higli; materials can be understood
8.5 9.0 2.39 if we assume that the highz oxides, instead of being
8.0 8.5 1.08 insulators] are disordered anisotropic metals with a large
8.0 8.2 0.97 anisotropic correlation length. At low, the resistivity is

75 8.0 0.92 dominant byp,,.. Oncel;, becomes shorter thaf in the

perpendicular directiong direction &, Eqg. (12) suggests
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that there is a sharp downturn in the perpendicular resistivity . 1 R 1

as the temperature increases. This trend will eventually stop — = —1=1= f dog—

at someT when the regular resistivity begins to dominate. 10 (2m)® S T oo 1
Thenp* will start increasing linearly withT, as in the regu- <1 e 2 [1~cos]

lar metallic behavior. In the parallel directiofl is always ' 17

smaller than the inelastic length and the transport in the , o . .
plane remains metallic. The above analysis neglects corred? the tight-binding representation for the mobility edge. In

tions and dynamic disorder that could also substantially afthe above we have defineg=ki«; as an effective momen-
fect the transport propertiés. tum constant, which represents physically the upper momen-
tum cutoff in the integral of Eq(15).
V. ANALYTICAL WORK Using relationg14) and(16) we derive that

To study the behavior of the critical disordéf. vs the oo € 1 S(E)
anisotropyt we improved the analytical work using the co- ?Z H 4_773 C27<v)’
herent potential approximatiotfCPA) coupled with the po- : .
tential well analogyfPWA) method, starting from the results which is independent df and therefore can be taken outside
of the diagrammatic analysisThe maximally crossed dia- the summation overr in the denominator of Eq17). So the
grams produced a correction to the zero-temperature corecalization criterion(17) can be rewritten as

figurationally average conductivityr;o(i=X,y,z) of the

(18)

form*2t 7hQojg 1 da 1 G5 (E=6)
) 2622 (2m2) O3 v ’
i & 2?2 [ 4k ! >, (2—2cog)
oo Th (27)3 3 ’ =t
| (2m) —iw[262N(E)]+ 2. iok? (19
k=1

(13 Where G5,(E=6)=0.252 731 is the Green’s function for
the 3D isotropic simple cubic lattice, calculatedEst6 in

where do;= oy — i and N(E) is the density of states per units of v, the hopping integral.

unit cell per spin and the limiv—0 must be taken. In the

weak scattering limitrq is giverf*?2by A. Plane coupling

e? 1 viz To describe a system of coupled planes, let us take the
Ti0= 7 4—7735(5) 7, (14)  directionsx andy to have hopping matrix elements=1.

v Thena,=a, and the localization criteriol9) becomes

where 7 is the isotropic relaxation timey; is the velocity in

thei direction,S(E) is the Fermi surface, and the average is ﬂ _Gis (E=6) (20
taken over the surfacg(k) =E. 02 ¥77x07 3D
In a tight-binding model, the equivalent expreséitrto
Eq.(13) is or
. 1 v2 ,UZ 1/2 .
doi__ @ f dk —ClTZS(E)<v>1/2<—X><—Z> =G,(E=6). (21)
gio  (2w)3 8 vivv
1 We define
>< 1
. > whQ) Tio Ug
—imhwQON(E)+ >, —— — [1-codkia;)] =
=1 e ol 050 v
i == , (22
(15 70 <”_>
v

where we introduce a lattice constaftthat depends on the

i direction and)=1II>_, a; . It was found® that«; is propor- ~ sO

tional to the mean free path and at this point we introduce ) ) ) )

the generalized assumption that the mean free path is differ- [ Uy Uz\ [ W

ent in different directions, i.e., the velocity is taken to <U>_<7> +<_> +<_> _<7> (2+t). (23

v v
depend on the direction. The relaxation timeés taken to be ) ) ]
isotropic. Also, in our analysis we use the approximation The quantityS(E){v{/v) can be expressédn terms of the

lattice Green'’s functions, choosing the lattice constgnas
AN the unit of length, as
(wl—)| 7 (196
’ o\ _42m?
X\ _ 2 . .
where v is the velocity average over the surface )<;> =—7 &lIMG(E;0,0,0 —ImG(E;2,0,0]
E(IZ)=const. Localization occurs when(w—0)=0, i.e., (24)

a;=Cyl;=Cy[(v})]¥?r=C,
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and 107 ¢ MARAM| T MARRAM v T T
v\ _4@2m)? , : Plane Couplin
S(E)| — | =——t3[IMG(E;0,0,0 ~ IMG(E;0,0,2)], » pling
o
@9 0l %o 4
whereG is the Green’s function of the periodic anisotropic %
tight-binding system with hopping matrix elements T o
(=1, t,=1, andt,=t). I
Combining Egs.(21)—(23), we obtain an expression for 0
the critical relaxation timer; for plane coupling 10 b O% 4
87°S(E) G, (E=6) ; o
o= AR (26 » ;
cl[te<2+te>]l’2< S<E><—X> ) ®
v 10t AT S bt AT B

PRES Lol
. . 107 10" 107 107 10 10
and by the use of Eq24) we obtain thatr; is equal to
Anisotropy t

TZ_ﬁZS(E)G‘;D(E:G) 10" p—gymrrrrem—r—rrrr S -

c 2 [ ]
32m°Cy : OOO Wire Coupling

X ! . 10° E

[te(2+1e) Y4 IMG(E;0,0,0 — IMG(E;2,0,0)]? z

@n = :
1 4
In Fig. 8@ we plot the critical relaxation timer, vs the 10 3 E

anisotropyt for coupled planes, as obtained from EJ7). F
To obtain 7, we must know howS(E=0)/C, changes for I

different values ot. This is not easy, due to uncertainties in 10° L O%
the value ofC,. However, sincé&s(E=0)/C; equals 6.75 for o
t=1 and 7.70 fot=0, we could have approximated it by its i ]
3D value of t=1, but instead we have used that o (® N
S(E=0)/C;=6.79t+1.141(2-t)]. Notice that from the 10'110_5 : ""'i'(‘),4 B 1(‘)2 Y

log-log plot of 7, versust [Fig. 8@)] one clearly sees that the
limiting behavior of r., for smallt, agrees very well with Anisotropy t
the results obtained from E¢B2), that is, 7.~t~ *? ast—0.

In the limit of small couplingt—0 it can be showhthat FIG. 8. Critical relaxation timer, vs the anisotropyt for (a)

weakly coupled planes ar{th) weakly coupled wires.

2 1
ImG(0:0.0,0 = ;Inz— Zlnt’ 28 and by using tha8(E)/C,=7.70, itst=0 value, we obtain
that
1
ImG(0;0,0,2=—-—, (29)
4
~ 0.109
ImG(O,Z,0,0):;(InZ—l)—%Int, (30
SO Taking into account that~W ™2 in the weak scattering
limit, we obtain the limiting behavioW,~tY* ast—0 for
_,[ImG(E;0,0,0—ImG(E;0,0,2] weakly coupled planes.
¢ " [ImG(E;0,0,0— ImG(E;2,0,0] In previous analytical worR,the critical relaxation time
7. Vs the anisotropy for coupled planes has been obtained,
_t2 E_E but using the same mean free path in all directions. This
t? In2+ Int|. (3D L2 g
8 4 analysis gives tha#,~ 1/y|Int| whent—0, which is dras-

Using the above, we obtain,~t~ 22 tically different from our present resul,~t4 It must be

2nis ([ length « is proportional tol. However, in anisotropic sys-
e A Gap(E 6)1/2 S(E))l (32) tems it is nota priori clear whethera;=C;l; or a;=C,l,
1282 In2+ } \ t wherel is an appropriate average of thes. The present
8 numerical data seem to support the chaige-C,l; .

stressed that in isotropic systems it is accepted that the cutoff
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B. Wire coupling and by using thaS(E)/C,=1/m, its t=0 value, we obtain
To describe a system of weakly coupled chains we defindhat
the hopping matrix elements ag (t, ,t,) = (t,t,1), i.e., thez
direction is chosen as the large hopping direction. We define

0.0226:
Te= n .

2 (42)
oy <7> _,[ImG(E;0,0,0 — ImG(E;2,0,0)]

e_o_zo_<u_§> ~ " [ImG(E;0,0,00—ImG(E;0,0,2)]" Taking into account that~W~?2 in the weak scattering

limit, we obtain the limiting behavioWW,~t*? ast—0 for
(34)  weakly coupled lines. In previous analytical wdtkwhere
the same mean free path in all directions was used, the limit
of the critical relaxation time, for weak coupling (—0) is

v

In this case,a,= a, and the localization criterio(19) be-

comes the same as the limit in the present wark- 1/t, although
5 the full expression for is different.
z_ezazo'xoz 3n(E=6). (39
h C. CPA and results
Using that
g The relaxation timer for a disordered system can be cal-
2 2 t culated through the CPA by utilizing the relation
=) =tel =)= 36)
v \ v 1+ 2te<v> (
and Egs(14), (16), (34), and(35), we obtain that [ T o '
; F 0 Transfer Matrix
, "*S(E)G3p(E=6) A CPA Results
Te= 2 [ — 1/4 1
327°C, 154¢ a
o« 1
to(1+2to) ¥ ImG(E;0,0,00— ImG(E;0,0,2 % We
(37)
In Fig. 8b) we plot the behavior of the critical relaxation
time 7. as a function of anisotropy strengthfor weakly L 4 Plane Coupling
coupled wiresz, is calculated using Eq37). To obtainz, @
we must know howS(E=0)/C, changes for different values 10° , , .

of t. As we have mentioned above, this is not easy, due tc 107 1072 10" 10°
uncertainties in the value @,. However, sinc&S(E=0)/C,

equals 6.75 fot=1 and 1#r for t=0, we have used that t
S(E=0)/C,=6.79t+(1/6.757)(1—1)] for all values oft. -
Notice that the limiting behavior of., for smallt, is given
by 7.~1f and agrees very well with the results obtained
from Eqgs.(37) and (40). | |
In the limit of weak wire coupling—0 it can be showtt © Transfer Matrix 3
that A CPA Results
10' | —154¢"
ImG(E;0,0,00 —ImG(E;0,0,2=—1, (39 Wc
1
ImG(E;O,O,O)—ImG(E;Z,O,O):—5, (39
S0 *
(b) Wire Coupling
=tk 4o L S
Using Eqs.(37)—(40), we obtain that the limit—0 of Eq. t
(37) is given by . . .
FIG. 9. Critical disordeiV, for localization vs the anisotroply
72Gis (E=6) S(E) 1 for (a) plane andb) wire coupling. Open circles are results calcu-
ng 3D — (41) lated through the CPA method and solid triangles are the numerical

1672 Ci ¢? results calculated by transfer matrix techniques.
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0.5 the proper one and the good agreement of our numerical
= ims (43 results withw,~t** provides further support to this choice.
In Fig. 9b) we plotW, as a function of anisotropl for
where X is the CPA self-energy obtained by solving the the weakly coupled chains. Notice that the predictions of our

self-consisterft equation anisotropic CPA, shown as solid triangles, are in agreement
with our transfer-matrix results, which are shown as open
s :< €n > _ (44) circles. The CPA results oV, vst can be fitted well with a
1-(en—2)G(E-2) single power-law dependendt,~=15.4%2 for t<0.8 . The

numerical result§open circleg are in excellent agreement

For E=0, the solutions, of this equation has no real part. with the CPA results.

Hence no shift in energy is taking place. For simplicity, we
will concentrate on the band centér=0. In Eq.(44) the site
energiess,, take values from a rectangular distribution of VI. CONCLUSION
width W. The critical disordetV, in which the transition of In this work we have numerically and analytically studied
extgnded to Iocah_zed states occur is the value of d'?‘_’rde'highly anisotropic systems that represent weakly coupled
which in Eq._(43)_g|ves a relaxation time equal to the cr_ltlcal planes and weakly coupled wires. For the numerical study
value 7 [which is known from Eq(27) for plane coupling \ye ysed the transfer-matrix techniques, while for the analyti-
or Eq.(37) for wire coupling. _ . cal study we used the self-consistent theory of localization
Using the above procedure, we obtained the critical d's'represented by the PWA with the CPA. Numerically we

order W, for some values of for plane and wire coupling.  tq,nd that there is only one mobility edge for both propagat-
We compare those values with the numerical results obtainegly girections, i.e., the states in the direction parallel to the

u:'sing thg trqnsfer—matrix method .and finite-size scaling teChpIanes (or wires became localized at exactly the same
niques, in Figs. &) and 9b). In Fig. 9a) we plotW; as & amount of disorder as the states in the perpendicular direc-
function of anisotropyt for the weakly coupled planes. No- o However, the correlation lengthof the extended side
tice that our predictions of our anisotropic CPA, shown asyf the transition and the localization length of the localized
solid triangles, are in agreement with the transfer-matrix resige can be very different for the two propagating directions.
sults, which are shown as open circles. The CPA results ofpig pehavior of¢ can possibly explain the transport prop-
W, can b(le/4f|tted well with a single power-law dependencegies of highT, materials. The critical value of disordey,
W,=15.4"" for t<0.8. The numerical result¢solid tri-  seems to be proportional 3" for weakly coupled planes
angles are larger than the CPA results fior0.1 and they do 44 is proportional ta¥’2 for weakly coupled chains, as ob-
not drop as fast as the CPA results f6f0.2. We want 10 (aineqd from our analytical investigations, assuming that the

stress that the numerical results #&; are very difficult o gffective cutoffe, is proportional to the corresponding mean
obtain fort<0.2 and it is possible that larger errors might befqe pathl; for each direction.

found. However, both our numerical results and the CPA
results show a power-law dependencé\Gfvst. Most prob-
ably W~ t*4 This dependence is in marked contrast to what
one would expect based on a reasonable heuristic argéftnent We are grateful to Dr. Rojo for sending us his numerical
and also predicted previously by more elaborate thedfes, data at the early stage of the project. Ames Laboratory is
which give a much weakerdependenc&V,~ 1/,/[Int]. The operated for the U.S. Department of Energy by lowa State
t dependence is also different from the results obtained foUniversity under Contract No. W-7405-ENG-82. This work
the weakly coupled chairfd,which give W,~t*2 we will was supported by the Director of Energy Research, Office of
discuss this below. As we have argued above in(E6), the  Basic Energy Sciences and NATO Grant No. CRG 940647.
reason forW_~t¥* is that in an anisotropic system the ef- It was also supported by EU Grant No. ERBFMBIC-CT96-
fective lattice constant; has to be proportional to an aniso- 0640 and dIENEA Research Grant at the Greek Secreteriat
tropic mean free path . We believe that this choice may be of Science and Technology.

ACKNOWLEDGMENTS

A, A. Abrikosov, Phys. Rev. B0, 1415(1994. High T, superconductorsedited by D. M. GinzbergWorld

2A. G. Rojo and K. Levin, Phys. Rev. B8, 16 861(1993, and Scientific, Singapore, 1992

, references therein. _ "G. Kotliar et al, Europhys. Lett15, 655 (1991).

Y. Zha, S. L. Cooper, and D. Pines, J. Phys. Chem. SRS  8rqr 3 recent review, see B. Kramer and A. MacKinnon, Rep.
1781(1995; Y. Zha, Philos. Mag. B74, 497 (1996. Prog. Phys56, 1469(1993.

4Qiming Li, C. M. Soukoulis, E. N. Economou, and G. S. Grest, 9p. Wdfle and R. N. Bhatt, Phys. Rev. B0, 3542(1984; R. N.
Phys. Rev. B40, 2825(1989. Bhatt, P. Wifle, and T. V. Ramakrishnaiibid. 32, 569(1985.

SW. Xue, P. Sheng, Q. J. Chu, and Z. Q. Zhang, Phys. Rev. LettlOyy. Apel and T. M. Rice, J. Phys. @6, L1151 (1983.
63, 2837(1989; Z. Q. Zhang, Q. J. Chu, W. Xue, and P. Sheng, 1!|. Zambetaki, Qiming Li, E. N. Economou, and C. M. Soukoulis,
Phys. Rev. B42, 4613(1990; Q. J. Chu and Z. Q. Zhanghid. Phys. Rev. Lett76, 3614(1996.
48, 10 761(1993. 123-L. Pichard and G. Sarma, J. Phys1@ L617 (198)); J. T.
SFor a review of experiments see Y. lye,Riysical Properties of Chalker and P. D. Coddingtoihid. 21 2665 (1988; M. Hen-



56 LOCALIZATION IN WEAKLY COUPLED PLANES AND ...

kel, J. Phys. A20, L769 (1987).
Qiming Li and C. M. Soukouligunpublishedl

14For a discussion of the two methods see J.-L. Pichard, N. Zanon,

Y. Imry, and A. D. Stone, J. PhysFrance 51, 587 (1990.

15y, I. Oseledec, Trans. Moscow Math. Sd®, 197 (1968.

163.-L. Pichard, Ph.D. thesis, Universile Paris Orsay, 1984; J.-L.
Pichard and AndreEurophys. Lett2, 477 (1986.

E. N. Economou and C. M. Soukoulis, Phys. Rev. L46,. 618
(1981; D. S. Fisher and P. A. Lee, Phys. Rev. A, 6851
(198)).

18Qiming Li, S. Katsoprinakis, E. N. Economou, and C. M. Souk- 5

oulis, Phys. Rev. B56, R4297(1997.

¥The relationg~1[exp(2L y/\y) — 1] [Eq. (1)] has been derived
[E. N. Economotet al, Phys. Rev. B31, 6485(1985] using
Anderon’s argumentP. W. Andersonjbid. 23, 4828 (1981)]

12 231

o=0g/M~a/M + 1/, whereé is the correlation length. The co-
efficient @ is approximately a constant of orddr, away from

the critical point. Notice thai\ﬂ:l.Z andA¢=0.12 fort=0.1.

For the infinite-size systenM—~, o~1/¢, and therefore
ollot=¢4El In the weak disorder limit/ol~t2 and there-
fore ¢l=t2£-. The ratio of the localization lengths can be ob-
tained by using the length rescaling idea. The conductances in
all the directions are the same if the dimension of the system is
proportional to the localization length in that direction. This im-
plies the expressioh’/L!=(o" /)2 and sincer' ~t2c!, we
obtain thatL._ =tL..

Y. Imry, Phys. Rev. Lettd44, 469(1980; J. Appl. Phys52, 1817

(1981; M. Jonson and S. M. Girvin, Phys. Rev. LetB, 1447
(1979; S. M. Girvin and M. Jonson, Phys. Rev. 2, 3583
(1980.

2lE N. EconomouGreen’s Functions in Quantum Physi@&nd ed.

that a well-behaved quantity that can serve as a single scaling (Springer, Heidelberg, 1983

parameter and is also additive with respect to the lehgththe
ratio yL/\y, , Wherey is a slowly varying function of./\, . It
was found numerically that varies between 1.13 and 1 as
L/\y varies from infinity to much less than unity. Thyscan
be taken to be 1 in Eql). The above derivation of Ed1) is
based also upon the double inequalityl<M <\, where
M X M is the cross section of the bar of lendgttand mean free
pathl. Thus Eq.(1) is certainly not valid in the ballistic regime
wherel=M or |=L. However, it is valid in the weak scattering
(but not ballisti¢ regimel<M,L and <\ (in this regime
Au~M2/€, E~1/, and thus the double inequalitygM,L <\,

is easily satisfied It is worthwhile to point out that numerical
calculations show that Eq1l) works even near the critical re-
gime (whereé—x) in spite of the breakdown of the inequality
M<\y . In the weak disorder limik,,>M, the dimensionless
conductanceg~ 1[exp(2M/Ay) —1] can be expanded and
gives thatg~\ /M. By using the data of Fig. 2, which obey
Eq. (6), we obtain that g~a+M/¢ and therefore

22E. N. Economou and C. M. Soukoulis, Phys. Rev28& 1093

(1983; E. N. Economou, C. M. Soukoulis, and A. D. Zdetsis,
ibid. 30, 1686(1984%.

23N. A. Panagiotides, S. N. Evangelou, and G. Theodorou, Phys.

Rev. B49, 14 122(1994; O. N. Dorokhor, Solid State Com-
mun. 46, 605(1983; 51, 381 (1984.

24To determine the critical disordan, where the system crosses

over from one to three dimensions for the weakly coupled chains
and from two to three dimensions for the weakly coupled planes
we consider a particle in a particular chain or plane, respec-
tively. With probability 1/2(3-d) the particle will hop to an-
other chain or plane after a time and therefore distance propor-
tional to 1£, wheret is hopping integral. The localization length
L, in the 1D [2D] case is proportional to W?
[exp(a/W?)], respectively. So the conditidn,= 1/t determines
the critical disordelV, . For the one to three dimensions, we
have 1W?2=1/t and therefor&V,~t"2 For two to three dimen-
sions, we have exp(W?)=1/t and thereforaV,~1/,/]Int].



