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Localization in weakly coupled planes and weakly coupled wires
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We investigate the localization behavior of the Anderson model with anisotropic hopping integralt for
weakly coupled planes and weakly coupled chains both numerically with the transfer matrix method and
analytically within the self-consistent theory of localization. It is found that the mobility edge is independent
of the propagating direction. However, the correlationj ~localizationLc) length in the extended~localized!
side of the transition can be very different for the two directions. We find thatj i5t2j' and Lc

'5tLc
i , in

agreement with the scaling theory of localization. We discuss how this can possibly explain the transport
properties of high-Tc materials. The critical disorderWc is found to vary ast1/4 for weakly coupled planes and
as t1/2 for weakly coupled chains. A discrepancy with the predictions of a diagrammatic analysis on the
conductance ratio is discussed.@S0163-1829~97!03544-3#
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I. INTRODUCTION

The problem of Anderson localization in anisotropic sy
tems has attracted considerable attention1–5 in recent years,
largely due to the fact that the highTc superconductors ar
highly anisotropic. Transport in the normal state is meta
in the x-y plane, but appears semiconductorlike on thez
axis.6 The nature of thez-axis transport in high-Tc materials
is still controversial and its understanding may have imp
tant consequences for the theories of the normal and the
perconducting state. This paradoxical property has promp
the proposal7 that a high-Tc material in the normal state i
actually an insulator, appearing metallic only because
inelastic length in the plane is less than the localizat
length. It has also been argued2,6 that a negativedr/dT in the
z direction alone may signify anisotropic localization, with
metal-insulator transition depending on the propagating
rection, in direct contradiction to the predictions of the sc
ing theory of localization.8 A recent diagrammatic
calculation1 lent support to such a claim. Previous diagra
matic analysis,9 however, led to the conclusion that the sc
ing property in anisotropic systems remains the same as
of the isotropic systems with a simple substitution of t
conductance by its geometric mean. Given the perturba
nature of all the previous work, it is important to careful
study the localization behavior of disordered anisotropic s
tems with reliable numerical techniques and to determ
whether the scaling theory is valid for highly anisotrop
systems.8–11

In the present work, we have systematically studied
localization properties of a three-dimensional disordered
560163-1829/97/56~19!/12221~11!/$10.00
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isotropic system and our analysis on sufficiently large s
tems has revealed the following properties.

~i! The metal-insulator transition is independent of t
propagating direction.

~ii ! At the critical point, the geometric mean of the ratio
of the finite-size localization lengths to the width of the bar
independent of the anisotropy. This remarkable relat
might underline the conformal invariance property at t
Anderson transition.12,13

~iii ! The critical disorderWc seems to vary with the an
isotropyt ast1/4, in disagreement with the expected logarit
mic dependence. Our diagrammatic theory of the anisotro
localization can provide an explanation for this remarka
relation.

~iv! The critical exponents for the correlation and loca
ization length for both propagating directions are equal
that of the isotropic system.

~v! The difference between the correlation lengths in
different propagating directions may possibly explain t
normal state transport properties of the high-Tc materials.

We have also studied the localization behavior of wea
coupled chains, which simulate the one-dimensional~1D! to
3D continuous transition. We also find that the met
insulator transition is independent of the propagating dir
tion and that, at the critical point, the geometric mean of
lM /M for the different directions is constant, independent
the anisotropy. The critical disorderWc is found to behave as
t1/2, in agreement with previous studies and with the resu
of the coherent potential approximation.

We used the transfer-matrix and finite-size scaling te
niques to calculate both the conductance and the localiza
12 221 © 1997 The American Physical Society
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length. In Sec. II we describe the model and the numer
techniques we used, in Sec. III we present and discuss
numerical results, in Sec. IV the transport high-Tc materials
are discussed, in Sec. V we present our analytical work
compare with numerical results, and in Sec. VI we summ
rize the conclusions of this work.

II. MODEL AND NUMERICAL TECHNIQUES

We are considering a general three-dimensional tig
binding Hamiltonian on a simple cubic lattice with one o
bital per lattice site. The corresponding difference equat
for the amplitudes of the wave function,cl ,n,m , written for a
bar of lengthL and square cross sectionM3M , takes the
form

~E2e l ,n,m!cl ,n,m5tx~cl 21,n,m1cl 11,n,m!

1ty~cl ,n21,m1cl ,n11,m!

1tz~cl ,n,m211cl ,n,m11!, ~1!

where a lattice site is denoted by the set (l ,n,m), with
l 51,2, . . . ,L and n,m51,2, . . . ,M . The lattice spacing is
taken equal to unity, while the diagonal random site energ
e l ,n,m associated with every lattice site (l ,n,m) are chosen
from a box probability distribution of mean zero and wid
W. We define thez direction as the propagating direction, s
tz is the hopping matrix element along the propagating dir
tion, while tx andty are the hopping integrals in thex andy
directions, respectively. In the simple cubic lattice of o
tight-binding model, the hopping integrals are nonzero o
between nearest-neighbor sites and depend on direction
general,txÞtyÞtz . We normalize all the energies by th
largest hopping integral, so all the parameterstx , ty and tz
take values between 0 and 1.

In this work we study the cases thattx is equal totz or ty .
When tx5tz51 or tx5ty51 the system consists of a set
coupled planes and the propagation takes place paralle
perpendicular to the planes, respectively. Whentx5tz,1 or
tx5ty,1, the system consists of a set of coupled chains
the propagation takes place perpendicular or parallel to
chains, respectively. As a convention, we assign the direc
with the large and small hopping integral as the paralleli)
and the perpendicular (') direction, respectively. We defin
t as the ratio of the small hopping integral over the large o
so t measures the anisotropy ratio and takes values betw
0 and 1.

First, we treat this problem of Anderson transition usi
the transfer-matrix technique,14 combined with the one-
parameter scaling conjecture. Our model@described with Eq.
~1!#, is particularly suitable for the transfer-matrix approa
since the linear lattice of sizeL is exceedingly large~by
orders of magnitude! in comparison to the sizeM in the
perpendicular directions. In this representation, the evolu
of the state is described by a product of transfer matri
QL5) l 51

L Tl . For eachl , the transfer matrixTl connects the
amplitudes cl 21,n,m ,cl ,n,m with the amplitudes
cl ,n,m ,cl 11,n,m(n,m51,2, . . . ,M ). The product matrixQL
satisfies the theorem of Oseledec,15 namely, that there exist
a limiting matrix
al
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G5 lim
L→`

~QLQL
†!1/2L, ~2!

with eigenvalues exp(g j ), where g j , j 51,2, . . . ,2M2 de-
notes the characteristic Lyapunov exponents ofQL . TheM2

Lyapunov exponents of QL are positive
(0,g1,g2•••,gM2), while the negative ones are equal
2g1 ,2g2 , . . . ,2gM2. The smallest of theM2 positive
Lyapunov exponentsg1 eventually determines the slowe
possible exponential increase of the state forL→`. There-
fore, it can be identified with the inverse of the longest e
ponential localization lengthlM (lM5g1

21) in the quasi-1D
system of cross-sectional areaM2.

Scaling is made possible by varying the perpendicu
size parameterM . According to the one-parameter scalin
theory, for givenM thelM /M should be a function ofM /l
only for any anisotropy hopping parametert, disorder value
W, and electronic energy stateE. The M -independent char-
acteristic lengthl equals the localization lengthl[ limlM
as M→` ~if the states are localized! and characterizes th
extent of the largest-amplitude fluctuation~if the states are
extended!. For W.Wc the ratiolM /M is expected to fall
with increasingM , while for W,Wc it should instead rise.
For W5Wc the ratiolM /M has a value independent ofM
and this behavior defines the Anderson transition point.
make the further assumption that the scaling param
l(E,W,t) diverges as W→Wc with a power law
l;uW2Wcu2n. This defines the exponentn, which is
n.1.3 for the simple cubic isotropic system.

The Lyapunov exponents may be used directly to cal
late the conductanceg of a quasi-1D system16 ~in units of
e2/h)

g5(
j 51

M2

2

cosh2~g jL !
. ~3!

Another way14 to calculate the conductanceg of a
M3M3M cube is from the multichannel Landaue
formula17

G~M !5
e2

h
Tr~ t†t !, ~4!

wheret is the transmission matrix. The behavior of the co
ductanceg vs M can determine the localization properties
the system similarly tolM /M within the localization length
lM calculations. For localized states (W.Wc), g is ex-
pected to fall with increasingM ; for extended states
(W,Wc), g should rise; forW5Wc , g is independent ofM
and this defines the Anderson transition point.

III. NUMERICAL RESULTS AND DISCUSSION

Using the numerical techniques and finite-size scaling
sumption described above, we studied the Anderson tra
tion in three-dimensional anisotropic systems. In Fig. 1
present our numerical results for the conductanceg5G/e2/h
versusM , calculated by the Landauer formula given by E
~4!, for a system of weakly coupled planes. The calculat
is for the center of the bandE50 and the size of the cubic
systemM3M3M that is used isM55, . . .,20. Because of
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the non-self-averaging nature of finite-size systems, an a
age over many random configurations~up to 500 for the
M520 case! must be taken to suppress the large fluctuatio
The anisotropy ratio ist50.1 and we present results for bo
propagating directions. Notice that for propagation perp
dicular to the planes and for disorder close to the criti
point ~e.g.,W58) the conductanceg decreases for smallM ,
but it increases for larger system sizeM . If we only use the
numerical results of systems with sites up toM511, we
would derive the result that the critical disorder in the p
pendicular direction is different, much lower in fact than t
valueWc58.5, which is the critical disorder for propagatio
along the parallel direction. However, if we use large enou
systems, which are difficult to obtain numerically (M>13
for this value of anisotropyt50.1), we clearly see that th
critical disorder has approximately the same valueWc.8.5
in both directions. This result is also supported by the res
to be presented later, forlM /M versusM and the behavior
of correlation and localization length versus disorder. T
critical conductance in the two directions att50.1 is ap-
proximately gc

'. 1027gc
i , which is a much stronger varia

FIG. 1. Conductanceg plotted as a function ofM for E50,
t50.1, and various values of disorderW, for both propagating di-
rections. The calculation is done by the multichannel Landauer
mula ~4! for a cube of sizeM3M3M .
r-
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tion than the g'.t2gi, predicted by the diagrammati
analysis9 of the anisotropic model. This may be an indicatio
of the existence of high-order corrections to the conductiv
that is not simply proportional to the bare conductivity. Th
point will be discussed in more detail below.

Using the transfer-matrix technique for a long bar
length L and width M3M , we obtained the localization
lengths lM for both directions at the center of the ban
E50. These results are presented in Fig. 2. The maxim
width M of the bars that we used was 17, which is the larg
width ever used for this kind of calculation. The lengthL we
used was at least 5000 and an average over 20 diffe
samples was taken in order to estimate the error in the
culation of the longest localization lengthlM . The error bars
of the numerical data forlM /M are less than the size of th
printed points. In the figures the error bars are not explic
drawn.

The results in Fig. 2 clearly support the findings that t
critical disorder seems to beWc.8.5 for both propagating
directions. The critical disorder is defined by anM indepen-
dent lM /M . Notice again that if only sizesM<11 were
used, which are appropriate in the isotropic case, one wo

then have erroneously concluded thatWc
i .Wc

' .

r-

FIG. 2. We plotlM /M , as calculated through the transfer m
trix techniques, vsM for E50, t50.1, and various values of dis
orderW, for both propagating directions.
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In order to be able to extrapolate to the infinite syst
size (M→`) it is necessary to investigate the scaling beh
ior of lM /M . It was found numerically that the functio
lM /M obeys a simple scaling relation of the form

lM

M
5 f S l

M D . ~5!

This is correct for both directions. The quantityl is the
localization lengthLc for the localized regime andl is the
correlation lengthj for the extended regime. The quantitiesj
andLc are calculated by the relations

lM

M
5a1

M

j
, ~6!

M

lM
5a211

M

Lc
~7!

for extended and localized states, respectively. In ca
where it is difficult to obtain reliable values forj and Lc
from Eqs. ~6! and ~7!, we use the fact thatlM /M has to
follow the scaling relation given by Eq.~5!. In these cases,j
and Lc are chosen in such a way that all the raw data
lM /M follow a universal curve. Of course, at the end w
make sure that the dependence ofj andLc on disorderW is
monotonic. The scaling functionf (x) for both directions be-
haves as 1/x in the limit x→0 for extended states, while fo
localized statesf (x);x in the limit x→0. This is clearly
seen in Fig. 3, where the scaling functions for both directio
are shown.

From Fig. 3 we see that close to the critical transiti
point lM /M tends to a critical valueLc[(lM/M )c , which
for the parallel propagating direction isLc

i 51.2 and for the
perpendicular propagating directionLc

'50.12. The impor-
tant point here is that for a given energyE and anisotropy
ratio t, the critical value (lM /M )c depends on the propaga
ing directions. The values ofLc we obtained forE50 and
anisotropyt50.1 suggest thatLc

' 5 tLc
i . This formula is

indeed correct for allt ’s we have examined, for weakl
coupled planes, and this is shown in Fig. 4. Notice that
weakly coupled chainsLc

'ÞtLc
i it rather looks like

Lc
'.t3/2Lc

i , but we have no theoretical understanding of t
relation. Since there is this strong dependence of (lM /M )c
on the anisotropy parameters we cannot use the valu
(lM /M )c50.6 ~which is the value for the isotropic 3D sys
tem! as a criterion for the transition point of Anderson loca
ization. Another important relation that we were able to o
tain is that the geometric mean of the different critical valu
Lc in the different directions is independent of the anis
ropy t. We derived that

~Lc
xLc

yLc
z!1/350.6. ~8!

Our results are shown in Fig. 5 for both plane and w
coupling. In the case of weakly coupled planes, Eq.~8! be-
comes@(Lc

')2Lc
i #1/350.6. This relation may have importan

consequences for the existence of conformal invarianc
the critical point of the Anderson localization problem.12,13

Another more plausible explanation which is based on s
-
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-
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ing arguments,18 is thatlM
i /M5(j i/j') f (M /j') for the par-

allel direction and two corresponding expressions for
perpendicular directions. At the critical point, the geomet
mean oflM /M is a constant, equal to the isotropic value
0.6.

In Fig. 6 the scaling parametersj andl for the center of
the band and for anisotropy ratiot50.1 are shown, as func
tions of the disorderW, for both directions. We see that i
the extended regime whereW,Wc , j'.j i. For example, at
W55, j'5100 andj i.1.5, in units of the lattice constan
which has been taken to be one. In the localized reg
whereW.Wc , Lc

i .Lc
' . For example, atW510,Lc

'.5 and
L c

i .55. Our numerical results approximately follow the th
oretical predictions19 that j i5t2j' and Lc

'5tLc
i . The t de-

pendence of the ratio of the localization lengths along
two propagating directions also explains whyLc

'5tLc
i for

weakly coupled planes, as shown in Fig. 4.Lc5(lM /M )c

FIG. 3. Renormalized localization lengthlM /M vs j/M ~or
L c/M! for various values of disorderW for E50 andt50.1 for the
~a! parallel and~b! perpendicular propagating direction. There a
two branches in the universal curve, the upper one correspondin
extended states andj/M and the lower one to localized states a
L c /M . Thus mobility edges exist for both propagations a
Lc

'.tLc
i .
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and sincelM is a length along the parallel direction, it has
scale as the localization length and therefore has the sat
dependence.

Let us discuss now the ratio of the conductances along
two propagating directions. As is clearly seen from Fig. 1
the critical point thatgc

'.1027gc
i , which is a much stronge

variation than gc
'.t2gc

i , predicted by the diagrammati
analysis9 of the anisotropic model and by the simple arg
ments presented in Ref. 19. Thet2 dependence of the ratio o
the conductances is only correct in the weak scatte
limit,19 whereg'/gi.j i/j'.t2. In general,

g'

gi
5

exp~2L i /lM
i !21

exp~2L' /lM
' !21

5
exp~2L ij

i/L'
2 !21

exp~2L'j'/L i
2!21

5
exp~2j i/L !21

exp~2j'/L !21
. ~9!

FIG. 4. RatioLc
'/tLc

i vs the anisotropyt, for plane and wire
coupling. Notice thatLc

'5tLc
i is obeyed only for weakly coupled

planes.

FIG. 5. Geometric mean valueL̄5(Lc
xLc

yLc
z)1/3 vs the anisot-

ropy t, for plane and wire coupling.
e

e
t

-

g

To obtain the last equality we have assumed thatL i5L'

5L5M , as is the case for the numerical results of the c
ductance, where we used a cube of sizeM3M3M . Our
numerical results of Fig. 6 have clearly shown thatj'@j i is
always correct for a strongly anisotropic system. We the
fore have that if the size of the systemL@j'@j i, we can
expand both the numerator and denominator of the last
pression in Eq.~9! to obtain that indeedg'/gi.j i/j'5t2.
This is correct only in the weak disorder limit. Notice from
Fig. 6 that even for weak disorderW52, j i.1, and
j'.20, which is comparable to the maximum size used
our conductance calculations. Ifj i!L!j', Eq. ~9! gives
that g'/gi

.(2j i/L)exp(22j'/L), which is a much stronger depen
dence thant2. Similarly, if L!j i!j', Eq. ~9! gives that
g'/gi.exp(22j'/L), which is also a much stronger depe
dence than thet2. This is the reason thatgc

'.1027gc
i at the

critical point andnot gc
'.t2gc

i . Another point that is worth
mentioning is that the geometric mean of the conductan
of our anisotropic system is not equal to the critical cond
tancegc of the isotropic system, which is roughly equal
0.1 in units ofe2/h. Remember that the geometric mean
the criticallM /M is equal to a constant and is given by E
~8!.

We have calculated the critical exponentn for the local-
ization length. This is done for the valuet50.1 for each of
the propagating directions by utilizing the finite-size scali
ansatz@Eq. ~5!#. We make the further assumption that th
scaling parameterl(E,W) diverges asW→Wc from the lo-
calized side with a power law (W2Wc)

2n. We may then
expand the functionf

lM

M
5A1BM

1
n~W2Wc!1O„~W2Wc!

2
…, ~10!

whereA andB are constants and

BM1/n5
d f

dWU
Wc

. ~11!

FIG. 6. Localization lengthLc or correlation lengthj as a func-
tion of disorderW for E50 andt50.1, for the parallel and perpen
dicular propagating directions. Notice that forW,Wc.8.0,
j'.j i, while for W.Wc , Lc

i .Lc
' .
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Therefore,n is obtained as the reciprocal of the slope of t
linear relationship between ln@d f /dW# at W5Wc and lnM .
For the numerical calculation of this slope we have used f
values ofM (511,13,15,17) for the perpendicular propag
ing direction and three values ofM (511,13,15) for the par-
allel propagating direction. This is because for the para
propagating direction the calculations up toM515 are
enough in order to have a correct estimation of the vari
quantities since there is a good linear scaling behavior of
lM /M vs M for M>11. Actually, the calculation forM517
needs really much CPU time and is at the limit of the ava
able computers.

Numerically, we calculate the derivatived f /dW using the
values oflM /M for two neighbor values ofW. For each pair
of W’s we calculate a value ofn and finally we take the
mean value of them to have an estimation of then exponent
and the standard deviation as the error of the calculationDn.
In Table I we present the pairs ofW’s (W1 ,W2) we used and
the corresponding calculated values ofn for propagation per-
pendicular to the planes. The mean value of then ’s gives an
estimation ofn'51.34 and the standard deviationDn50.11
gives an estimation of the error. Similarly, in Table II w
present the pairs ofW’s and the calculated values ofn for
propagation parallel to the planes. The mean value of then ’s
gives an estimation ofn i51.31 and the standard deviatio
gives an errorDn50.21. Within the numerical accuracy, th
valuesn'51.360.1 andn i51.360.2 are in agreement with
the n51.360.1 for the isotropic system.

We have used the transfer-matrix and finite-scaling me
ods to obtain the mobility-edge trajectory fort50.1 for all
the values ofE. This is shown in Fig. 7, where the streng
of the critical disorderWc versusE is shown for t50.1.

TABLE I. Calculated values ofn, for propagation perpendicula
to the planes, for different pairs (W1 ,W2) of the disorderW close to
the mobility edgeWc58.25.

W1 W2 n

7.0 7.5 1.08
7.5 8.0 1.27
7.5 8.3 1.32
7.5 8.5 1.27
8.0 8.5 1.28
8.3 9.0 1.93
8.5 9.0 1.24

TABLE II. Calculated values ofn, for propagation parallel to
the planes, for different pairs (W1 ,W2) of the disorderW close to
the mobility edgeWc58.25.

W1 W2 n

7.5 8.5 0.98
8.2 9.0 1.66
8.2 8.5 1.19
8.5 9.0 2.39
8.0 8.5 1.08
8.0 8.2 0.97
7.5 8.0 0.92
r
-

l

s
e

-

-

Notice that the shape of the mobility-edge trajectory is sim
lar to that of t51 shown in Fig. 5 of Ref. 4. Thet50.1
trajectory plotted in Fig. 7 is a little different from the on
shown in Fig. 5 of Ref. 4. In Ref. 4 the mobility-edge traje
tory was obtained by assuming that (lM /M )c.0.6 for all t.
We now know that this is not correct and therefore the c
rect mobility-edge trajectory is the one shown in Fig. 7 of t
present paper. Notice that forE50, Wc58.25, while for
W<1, the mobility edge is atEc.4.0.

IV. TRANSPORT HIGH- Tc MATERIALS

The difference betweenj i and j' is very important and
can possibly explain the normal state transport properties6 of
the high-Tc materials. The correlation lengthj measures the
strength of the fluctuations of the wave functions in the e
tended regime. For length scales larger thanj, the wave
function looks uniform, while for length scales smaller th
j, the wave function has strong fluctuations. Another r
evant length scale is the inelastic mean free pathl in , which
behaves asT2p, with probablyp51/2. Whenl in,j, a phe-
nomenon called incipient localization takes place and c
ductivity is controlled by l in . A convenient interpolation
formula20 valid in the conducting regime near the Anders
transition is given by

s loc5~e2/\!~a/j1b/ l in!, ~12!

where a and b are constants of order unity.19 For high
enough temperatures the conductivity is given by the reg
metallic behavior, wheresph5vp

2t/4p and the mean free
time t;T21. Becausesph and s loc describe independen
physical processes, we can add the corresponding resis
ties. Therefore,r5r loc1rph , where r51/s. The experi-
mental behavior of the high-Tc materials can be understoo
if we assume that the high-Tc oxides, instead of being
insulators,7 are disordered anisotropic metals with a lar
anisotropic correlation length. At lowT, the resistivity is
dominant byr loc . Once l in becomes shorter thanj in the
perpendicular direction (c direction! j', Eq. ~12! suggests

FIG. 7. Dependence of the mobility edge of the strength of
diagonal disorderWc for anisotropyt50.1.
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that there is a sharp downturn in the perpendicular resisti
as the temperature increases. This trend will eventually s
at someT when the regular resistivity begins to domina
Thenr' will start increasing linearly withT, as in the regu-
lar metallic behavior. In the parallel directionj i is always
smaller than the inelastic length and the transport in
plane remains metallic. The above analysis neglects cor
tions and dynamic disorder that could also substantially
fect the transport properties.2

V. ANALYTICAL WORK

To study the behavior of the critical disorderWc vs the
anisotropyt we improved the analytical work using the c
herent potential approximation~CPA! coupled with the po-
tential well analogy~PWA! method, starting from the result
of the diagrammatic analysis.9 The maximally crossed dia
grams produced a correction to the zero-temperature
figurationally average conductivitys i0( i 5x,y,z) of the
form4,21

ds i

s i0
5

e2

p\

2

~2p!3E dkW
1

2 iv@2e2N~E!#1 (
k51

3

s i0ki
2

,

~13!

whereds i5s i2s i0 and N(E) is the density of states pe
unit cell per spin and the limitv→0 must be taken. In the
weak scattering limits i0 is given21,22 by

s i05
e2

\

1

4p3
S~E!K y i

2

y L t, ~14!

wheret is the isotropic relaxation time,y i is the velocity in
the i direction,S(E) is the Fermi surface, and the average
taken over the surfaceE(kW )5E.

In a tight-binding model, the equivalent expression4,21 to
Eq. ~13! is

ds i

s i0
52

V

~2p!3E dkW

3
1

2 ip\vVN~E!1(
i 51

3
p\V

e2

s i0

a i
2 @12cos~kia i !#

,

~15!

where we introduce a lattice constanta i that depends on the
i direction andV5) i 51

3 a i . It was found22 thata i is propor-
tional to the mean free pathl i and at this point we introduce
the generalized assumption that the mean free path is di
ent in different directions, i.e., the velocityy i is taken to
depend on the direction. The relaxation timet is taken to be
isotropic. Also, in our analysis we use the approximation

a i5C1l i5C1@^y i
2&#1/2t.C1F ^y&K y i

2

y L G1/2

t, ~16!

where y is the velocity average over the surfa
E(kW )5const. Localization occurs whens i(v→0)50, i.e.,
ty
p

.

e
c-
f-

n-

r-

ds i

s i0
521⇒15

1

~2p!3E dqW
1

(
i 51

3
p\V

e2

s i0

a i
2 @12cosqi #

~17!

in the tight-binding representation for the mobility edge.
the above we have definedqi5kia i as an effective momen
tum constant, which represents physically the upper mom
tum cutoff in the integral of Eq.~15!.

Using relations~14! and ~16! we derive that

s i0

a i
2

5
e2

\

1

4p3

S~E!

C1
2t^y&

, ~18!

which is independent ofi and therefore can be taken outsid
the summation overi in the denominator of Eq.~17!. So the
localization criterion~17! can be rewritten as

p\Vs i0

2e2a i
2

5
1

~2p!3E dqW
1

(
i 51

3

~222cosqi !

5G3D
is ~E56!,

~19!

where G3D
is (E56)50.252 731 is the Green’s function fo

the 3D isotropic simple cubic lattice, calculated atE56 in
units of V, the hopping integral.

A. Plane coupling

To describe a system of coupled planes, let us take
directionsx and y to have hopping matrix elementsV51.
Thenax5ay and the localization criterion~19! becomes

p\

2e2
azsx05G3D

is ~E56! ~20!

or

1

8p2
C1t2S~E!^y&1/2K yx

2

y L K yz
2

y L 1/2

5G3D
is ~E56!. ~21!

We define

te[
sz0

sx0
5

K yz
2

y L
K yx

2

y L , ~22!

so

^y&5K yx
2

y L 1K yy
2

y L 1K yz
2

y L 5K yx
2

y L ~21te!. ~23!

The quantityS(E)^y i
2/y& can be expressed4 in terms of the

lattice Green’s functions, choosing the lattice constanta0 as
the unit of length, as

S~E!K yx
2

y L 5
4~2p!2

\
tx
2@ ImG~E;0,0,0!2ImG~E;2,0,0!#

~24!
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and

S~E!K yz
2

y L 5
4~2p!2

\
tz
2@ ImG~E;0,0,0!2ImG~E;0,0,2!#,

~25!

whereG is the Green’s function of the periodic anisotrop
tight-binding system with hopping matrix elemen
(tx51, ty51, andtz5t).

Combining Eqs.~21!–~23!, we obtain an expression fo
the critical relaxation timetc for plane coupling

tc
25

8p2S~E!G3D
is ~E56!

C1@ te~21te!#
1/2S S~E!K yx

2

y L D 2 ~26!

and by the use of Eq.~24! we obtain thattc is equal to

tc
25

\2S~E!G3D
is ~E56!

32p2C1

3
1

@ te~21te!#
1/2@ ImG~E;0,0,0!2ImG~E;2,0,0!#2

.

~27!

In Fig. 8~a! we plot the critical relaxation timetc vs the
anisotropyt for coupled planes, as obtained from Eq.~27!.
To obtaintc we must know howS(E50)/C1 changes for
different values oft. This is not easy, due to uncertainties
the value ofC1. However, sinceS(E50)/C1 equals 6.75 for
t51 and 7.70 fort50, we could have approximated it by it
3D value of t51, but instead we have used th
S(E50)/C156.75@ t11.141(12t)#. Notice that from the
log-log plot oftc versust @Fig. 8~a!# one clearly sees that th
limiting behavior oftc , for small t, agrees very well with
the results obtained from Eq.~32!, that is,tc;t21/2 ast→0.

In the limit of small couplingt→0 it can be shown4 that

ImG~0;0,0,0!.
2

p
ln22

1

2p
lnt, ~28!

ImG~0;0,0,2!.2
1

4p
, ~29!

ImG~0;2,0,0!.
2

p
~ ln221!2

1

2p
lnt, ~30!

so

te5t2
@ ImG~E;0,0,0!2ImG~E;0,0,2!#

@ ImG~E;0,0,0!2ImG~E;2,0,0!#

.t2F ln21
1

8
2

1

4
lnt G . ~31!

Using the above, we obtaintc;t21/2,

tc
2.

\2G3D
is ~E56!

128A2F ln21
1

8G1/2S S~E!

C1
D1

t
~32!
and by using thatS(E)/C1.7.70, itst50 value, we obtain
that

t5
0.109\

t1/2
. ~33!

Taking into account thatt;W22 in the weak scattering
limit, we obtain the limiting behaviorWc;t1/4 as t→0 for
weakly coupled planes.

In previous analytical work,4 the critical relaxation time
tc vs the anisotropyt for coupled planes has been obtaine
but using the same mean free path in all directions. T
analysis gives thatWc;1/Au lntu when t→0, which is dras-
tically different from our present resultWc;t1/4. It must be
stressed that in isotropic systems it is accepted that the cu
length a is proportional tol . However, in anisotropic sys
tems it is nota priori clear whethera i5C1l i or a i5C2l ,
where l is an appropriate average of thel i ’s. The present
numerical data seem to support the choicea i5C1l i .

FIG. 8. Critical relaxation timetc vs the anisotropyt for ~a!
weakly coupled planes and~b! weakly coupled wires.
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B. Wire coupling

To describe a system of weakly coupled chains we de
the hopping matrix elements as (tx ,ty ,tz)5(t,t,1), i.e., thez
direction is chosen as the large hopping direction. We de

te[
sx0

sz0
5

K yx
2

y L
K yz

2

y L 5t2
@ ImG~E;0,0,0!2ImG~E;2,0,0!#

@ ImG~E;0,0,0!2ImG~E;0,0,2!#
.

~34!

In this case,ax5az and the localization criterion~19! be-
comes

p\

2e2
azsx05G3D

is ~E56!. ~35!

Using that

K yx
2

y L 5teK yz
2

y L 5
te

112te
^y& ~36!

and Eqs.~14!, ~16!, ~34!, and~35!, we obtain that

tc
25

\2S~E!G3D
is ~E56!

32p2C1

3
1

te~112te!
1/2@ ImG~E;0,0,0!2ImG~E;0,0,2!#2

.

~37!

In Fig. 8~b! we plot the behavior of the critical relaxatio
time tc as a function of anisotropy strengtht for weakly
coupled wires.tc is calculated using Eq.~37!. To obtaintc ,
we must know howS(E50)/C1 changes for different value
of t. As we have mentioned above, this is not easy, due
uncertainties in the value ofC1. However, sinceS(E50)/C1
equals 6.75 fort51 and 1/p for t50, we have used tha
S(E50)/C156.75@ t1(1/6.75p)(12t)# for all values oft.
Notice that the limiting behavior oftc , for small t, is given
by tc;1/t and agrees very well with the results obtain
from Eqs.~37! and ~40!.

In the limit of weak wire couplingt→0 it can be shown21

that

ImG~E;0,0,0!2ImG~E;0,0,2!.21, ~38!

ImG~E;0,0,0!2ImG~E;2,0,0!.2
1

2
, ~39!

so

te.
1

2
t2⇒tc;

1

t
. ~40!

Using Eqs.~37!–~40!, we obtain that the limitt→0 of Eq.
~37! is given by

tc
25

\2G3D
is ~E56!

16p2

S~E!

C1

1

t2
~41!
e

e

to

and by using thatS(E)/C1.1/p, its t50 value, we obtain
that

tc5
0.0226\

t
. ~42!

Taking into account thatt;W22 in the weak scattering
limit, we obtain the limiting behaviorWc;t1/2 as t→0 for
weakly coupled lines. In previous analytical work,23 where
the same mean free path in all directions was used, the l
of the critical relaxation timetc for weak coupling (t→0) is
the same as the limit in the present worktc;1/t, although
the full expression fortc is different.

C. CPA and results

The relaxation timet for a disordered system can be ca
culated through the CPA by utilizing the relation

FIG. 9. Critical disorderWc for localization vs the anisotropyt
for ~a! plane and~b! wire coupling. Open circles are results calc
lated through the CPA method and solid triangles are the nume
results calculated by transfer matrix techniques.
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t5
0.5\

ImS
, ~43!

where S is the CPA self-energy obtained by solving th
self-consistent22 equation

S5 K «n

12~«n2S!G~E2S!L . ~44!

For E50, the solutionS of this equation has no real par
Hence no shift in energy is taking place. For simplicity, w
will concentrate on the band centerE50. In Eq.~44! the site
energies«n take values from a rectangular distribution
width W. The critical disorderWc in which the transition of
extended to localized states occur is the value of disor
which in Eq.~43! gives a relaxation time equal to the critic
value tc @which is known from Eq.~27! for plane coupling
or Eq. ~37! for wire coupling#.

Using the above procedure, we obtained the critical d
orderWc for some values oft for plane and wire coupling
We compare those values with the numerical results obta
using the transfer-matrix method and finite-size scaling te
niques, in Figs. 9~a! and 9~b!. In Fig. 9~a! we plot Wc as a
function of anisotropyt for the weakly coupled planes. No
tice that our predictions of our anisotropic CPA, shown
solid triangles, are in agreement with the transfer-matrix
sults, which are shown as open circles. The CPA result
Wc can be fitted well with a single power-law dependen
Wc.15.4t1/4 for t,0.8. The numerical results~solid tri-
angles! are larger than the CPA results fort<0.1 and they do
not drop as fast as the CPA results fort<0.2. We want to
stress that the numerical results forWc are very difficult to
obtain fort<0.2 and it is possible that larger errors might
found. However, both our numerical results and the C
results show a power-law dependence ofWc vs t. Most prob-
ably Wc;t1/4. This dependence is in marked contrast to w
one would expect based on a reasonable heuristic argum24

and also predicted previously by more elaborate theorie1,4

which give a much weakert dependenceWc;1/Au lntu. The
t dependence is also different from the results obtained
the weakly coupled chains,22 which give Wc;t1/2; we will
discuss this below. As we have argued above in Eq.~16!, the
reason forWc;t1/4 is that in an anisotropic system the e
fective lattice constanta i has to be proportional to an aniso
tropic mean free pathl i . We believe that this choice may b
st
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ed
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t
t

or

the proper one and the good agreement of our numer
results withWc;t1/4 provides further support to this choice

In Fig. 9~b! we plot Wc as a function of anisotropyt for
the weakly coupled chains. Notice that the predictions of
anisotropic CPA, shown as solid triangles, are in agreem
with our transfer-matrix results, which are shown as op
circles. The CPA results ofWc vs t can be fitted well with a
single power-law dependenceWc.15.4t1/2 for t,0.8 . The
numerical results~open circles! are in excellent agreemen
with the CPA results.

VI. CONCLUSION

In this work we have numerically and analytically studie
highly anisotropic systems that represent weakly coup
planes and weakly coupled wires. For the numerical stu
we used the transfer-matrix techniques, while for the anal
cal study we used the self-consistent theory of localizat
represented by the PWA with the CPA. Numerically w
found that there is only one mobility edge for both propag
ing directions, i.e., the states in the direction parallel to
planes ~or wires! became localized at exactly the sam
amount of disorder as the states in the perpendicular di
tion. However, the correlation lengthj of the extended side
of the transition and the localization length of the localiz
side can be very different for the two propagating directio
This behavior ofj can possibly explain the transport pro
erties of high-Tc materials. The critical value of disorderWc
seems to be proportional tot1/4 for weakly coupled planes
and is proportional tot1/2 for weakly coupled chains, as ob
tained from our analytical investigations, assuming that
effective cutoffa i is proportional to the corresponding mea
free pathl i for each direction.
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