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Wave propagation in nonlinear photonic band-gap materials
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We study theoretically the propagation of electromagnetic waves through periodic structures consistent of
layered materials with an intensity-dependent dielectric constant. We find the transmission properties to be
strongly modulated by both frequency and intensity in the presence of nonlinearity. The transmission diagram
in the frequency versus amplitude plane exhibits distinctive features depending upon whether the Kerr coef-
ficient is positive or negative. These features, though complicated, can be understood through the analysis of
stable periodic orbits of the corresponding nonlinear mapping. These systems exhibit bistability and multista-
bility most strongly near the upper band edges and between the basins of stable periodic orbits. Resonance
transmissions via soliton formation are analyzed through a simple mechanical analogy. We also discuss the
switching threshold and the feasibility of making a switch utilizing such a strudi864.63-18206)01324-Q

I. INTRODUCTION bands. The possibility of achieving optical bistable switching
in these distributed feedback structures was first pointed out
When dielectric materials are arranged periodically in cerby Winful et al® and demonstrated experimentally with a
tain ways, light at some frequencies is forbidden to propaGaAs/AlAs periodic structuré.In essence, the bistable re-
gate in any direction. The utilization of this remarkable prop-sponse results from the modulation of the transmission by an
erty of the recently discovered photonic band-g&BG) intensity-dependent phase sHifin much the same way as
crystals for device applications is currently under intensiveoccurred in the traditional nonlinear Fabry-Perot etalon. Ad-
investigations. Almost all the existing work focuses on the ditional EM wave transmission modes were discovered
linear regime in which the dielectric constant is independentvithin the stop bands in a numerical stfdgf the wave
of the field strength. It is well known that the presence ofpropagation in nonlinear superlattice structures. These modes
optical nonlinearity in a system leads to a much richer andare localized solutions, known as “gap solitons.” Under ap-
more complex response to radiation. Examples include thpropriate conditions, they can couple with the incident wave
formation of solitons in optical fibefsand optical bistability ~to achieve resonant transmissfohGap solitons can also
in nonlinear Fabry-Perot etaldr. These phenomena have exist in higher dimension¥. Recently, the propagation of
important potential technological applications in high-speediltrashort pulses in nonlinear superlatticebas also been
optical communication systems and in ultrafast opticalinvestigated. Due to the nonlinear nature of the problem, the
switches® We believe that incorporating nonlinearity in PBG response to a pulse cannot be obtained from the response to
materials may prove to be equally fruitful. However, beforeplane-waves by superposition. Even for plane-wave input, a
attacking the full three-dimensional problem, which is muchglobal picture of the optical response, has not been presented
more challenging, we need a better understanding of the gloret. Much more is known about the response of electrons in
bal picture of the propagation of electromagnetEM) a nonlinear latticé?*® In this case, the periodic modulation
waves in nonlinear media by using a simpler structure. Sucbf the nonlinear media is provided by the discrete nature of
studies in low dimensions may also prove useful for engithe lattice. A recent attemfftto formulate the transmission
neering structures that have very low thresholds for switchproblem of EM waves through nonlinear layered media ne-
ing. glected the inherent difference between EM waves and elec-
In this paper, we investigate theoretically the nonlineartronic waves, and the phase diagram obtained is thus only
response of wave propagation in a one-dimensional analogppropriate to electrons. Two features of the present study
of the PBG material: a multilayered structure consisting ofdiffer from the previous studie€:*3 (1) the effectiveness of
alternating dielectric material. These structures, commonlyhe nonlinearity is strongly modified by the frequency, due to
known as Bragg reflectors, exhibit forbidden regions of EMthe different behavior of the Maxwell and ScHinger equa-
wave transmission in the layering direction known as stogion, and(2) the modulation of dispersion relation by super-
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lattice breaks the symmetry between positive and negative Epel U4 E 71t el)  for x<0

nonlinear media and makes the nonlinear response to the EM  E(X,t)= i (Kx— wt) ;

wave much richer and more interesting. Ee orx>N,
In what follows, we shall formulate the problem of the \where k= w/c, o is the optical frequency, and is the

EM transmission in nonlinear layered structures and investiyacuum speed of the light. Within the structure, the propa-

gate in detail its transmission characteristics. In contrast tgation of a wave is governed by the Maxwell equations. The
the electronic systeri&™®studied previously, the strength of transmission coefficient is defined as

the nonlinearity depends upon both the frequency and the
intensity of the incident wave. Thus, the transmission dia- |E|?
gram is quite different from that of the electronic response in = W- 2
a nonlinear lattice. This is especially true for nonlinear media
with negative Kerr coefficients, where the strong modifica-We are interested in the transmission characteristics for dif-
tion of the nonlinearity by frequency, together with the ferent frequencies and input or output intensities.
physical boundary condition, conspires to make the transmis- To obtain the transmission characteristics, one usually
sion diagram more complex and interesting. However, wesolves the nonlinear wave equation within each layer and
shall show that as complex as it may appear, the overathen matches the waves with appropriate boundary
features can be understood through analysis of stable pe¢onditions®® Since the solution of the nonlinear equation is
odic orbits of the nonlinear mapping and analysis of variouexpressed as the inverse of a Jacobi elliptic integral, analyti-
bounds of the nonlinear difference and the correspondingal calculation becomes nontransparent when the number of
differential equations. We also present a simple and intuitivdayers exceeds three. In this study, instead of taking this ap-
picture of the soliton and soliton trains based upon a meproach, we investigate the response of the system in the limit
chanical analogy. We investigate the bistability and multistathat the nonlinear layer is so thin, such that the field within it
bility in different regions of the parameter space and discussan be approximated as a constant. This is the case when the
their potential use as switches. nonlinear layer thickness is small compared with the effec-
Our analysis is based on the steady state response of lodite wavelength within it. Under this condition, the Kronig-
Kerr media to plane-wave input. The effect of absorption,Penneys-function model becomes adequate. Thus, the elec-
nonlocal nonlinearity, and possible dynamic and transverstsic field obeys,
instability are not included. These effects could be important
for the operation of switching devices. In semiconductors, d?E(x) ew?
the diffusive nature of the nonlinearity counteracts the trans- ~gy2 ' 2.
verse instability and makes the plane-wave analysis more
relevant to experiment. =0. 3)
This paper is organized as follows. The theoretical formu- ) )
lation of the wave transmission in a nonlinear superlattice’Vithin the linear layers, the wave consists of two plane-
shall be presented in Sec. II, along with some discussions off@ves traveling in opposite directions. Eliminating the
the general symmetry properties of the resultant differenc&/aves in the linear media results in a difference equation in
equation. The transmission diagrams from the numerical inte'Ms of the field at the nonlinear layets, ,
tegration of the difference equation will be presented in Sec. :
III?AIso presented in Sec. Illqis some theoreptical understand- Ens1+En-1=[2 cok—ak sink(1+\E,[*)]En,  (4)
ing of these rich and complex features, including the preswhere we have adopted the Kerr-type of local nonlinearity,
ence of gap-soliton solutions. The bistable and multistablg_ = ¢,,+\a|E|2. The nonlinear Kerr coefficient s a,
response will be discussed in Sec. V, and we conclude i‘WhereazeOax a. We have assumed the linear media are a
Sec. VL. vacuum ,=1), and the distance between the neighboring
nonlinear layersg=a+b, is taken as one unit length. Equa-
tion (3) is valid whend<\ \e,,, but e,d>1. It happens that
such a model captures most of the essential features of the
Consider a structure of K alternating layers of two di- nonlinear response of the superlattice structures and is
electrics with linear dielectric constarg, andeg, and thick-  simple enough to allow for analytical treatment under special
nessa andb, respectively. The nonlinearity of one of the conditions, as we shall see later.
dielectrics, say mediA, is much larger than the other, sowe  Equation(4) has the property of conserving the energy
can consider the later as linear. The steady state plane-waflex J=2i(E Ey, —E;rEq.1). Moreover, it is invariant un-
transmission problem can be formulated as follows. A planeder a global gauge transformatidi,—e'’E,,. This means
wave of wave vectok is normally incident on the structure one can always tak&; to be a real positive number. The
from the left. A fraction of the wave is transmitted through strength of the nonlinearity can be absorbed into the field by
the structure and exits from the right and the rest is reflected simple rescaling of the fiel—E/|\|. We shall vary the
back. In this study, we concentrate on the stationary respongild strength, but keef\|=1. We also note that E¢4) has
only and shall not deal with the transient behavior and posthe same structure as the discretized version of the stationary
sible chaotic dynamics that have been discussed in previousonlinear Schrdinger equation for the electron transmission
studies’ Transverse effects have also been neglected. problem!?13
The EM waves outside the nonlinear structure are de-

scribed by Yns1+ ¥n-1= = Qifn— N |2, )

()

N
> [1+AEX)|2IE(X) 8(x—n) +K2E(X)
n=1

Il. FORMULATION OF THE PROBLEM
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FIG. 1. The transmission diagram for a nonlinear superlattice F!G- 2. The transmission diagram for a nonlinear superlattice
with a positive Kerr coefficient showing the broadening of the in- With @ negative Kerr coefficient showing the creation of passing

stability regions(dark and the developing of instabilities around "€9ions in the stop bands of the linear systems and overall suppres-

the stable low-period orbitéshown as lings N=80 and a=1. sion of transmission in the lower frequency paN=80 and
Higher bandgnot shown show a similar behavior. a=1. Lines are the trajectories of periodic orbits with the period

indicated by the number. The lower periodic orbits bridge the gap

. e completely for a large enough amplitude.
when we make the identification pietely g g P

Ill. GLOBAL TRANSMISSION DIAGRAM

YnEn, The results of our numerical calculations for A=80
system witha=1.0 are shown in Figs. 1 and 2, for positive
Ao N ark sink N\ and negativen, respectively. In these gray-scale plots of

the transmission coefficient in théx,(E,|) plane, the non-

passing regions appear as dark. We restrict the frequency to
=—2coK— —2 cok+ aksirk. be in the first band, although similar structures are observed
for all the bands. It is striking that the overall features,
It is clear that the effective nonlinearity is strongly modi- strongly mpdified by frequency as well as the field inte_nsity,
fied by the wave vectofor frequency in the EM case. The ShOV.V dominant tongue structures apd_appear 'f.racta_ll-l'lk.e. As
nonlinearity is much less effective in the long wave regimethe field stren_gth increases, transmission stability d|m|n|§he_s
and at the bottom of the band, in general, wherd-sth and nonpassing regions appear and en_lgrge._Transmlssmn
Another important difference is that in the electron case, tops beyond a frequt_ancy-dependgnt critical f'elq strc_ength.

. o n ther salient features include clear interference fringe in the

simple gauge transformatiofy, = (=1)", maps the system transmission band, and stop-band widening for positive
from (K,Q,\¢) to (K+m,—Q,—\). Thus, the transmis- ’
sion diagram for negativi, is related to that of a positive
\e, Simply by an inversion of th€ axis. No such transfor-
mation exists for Eq(4). This means the transmission dia- o.ogf
gram in the @,|E;|) plane will depend upon the sign of the
nonlinearity. The superlattice structure modifies the disper- w~
sion in such a way that it breaks the symmetry between posi-
tive and negative nonlinearity.

Before presenting our numerical results, let us explain the
procedure upon which these results are obtained. In the pres-
ence of nonlinearity, the transmission coefficient depends not
only upon the frequency, but also upon the intensity of the
incident wave. Indeed, the possibility of observing bistability
and multistability, i.e., the same input yielding more than one
possible output, is the key signature of the nonlinear oo
phenomenod.Instead, a common approach is to solve the b
problem with a fixed output. Equatio@) can then be iter- 2
ated backwards from the right to the left until we reach the
outside of the nonlinear media on the input side. The electric FiG. 3. The resonant transmission trajectories of single and mul-
field for x<O is subsequently decomposed into the incidentiple solitons in the first stop band of a nonlinear superlattice with a
and reflected plane waves. The transmission coefficient ifegative Kerr coefficientN=80 anda=0.35. Notice the extreme
then evaluated from the definition given in E@). low field amplitude.
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Kerr-type nonlinearity, but narrowing for negative Kerr-type mission diagram. Each of these stable periodic orbits sup-
nonlinearity, as the output field strength increases. In factports a finite stability basin. The size of these basins dimin-
the gap seems to be completely bridged in the negative norishes as the intensity increases, and eventually vanishes
linear system. Detailed examination of the transmissiorcompletely at a critical value of intensity when the mapping
within the stop-band reveals well-defined transmission stripsurns from elliptic to hyperbolic. In fact, there are an infinite
(Fig. 3 for negative nonlinearity only. At the end of this number of such periodic orbits startinglat 277g/p on the
section, we shall show these are the trajectories of the res&;=0 axis. Because these orbits cannot cross each other and
nant transmission via single soliton and soliton trains thathey terminate at different values of the critical intensity, the
were first observed by Chen and Mifls. overall shape of the transmission diagram appears fractal-
In the following subsections, we shall attempt to providelike. The dominant tongue structure is an actual reflection of
some theoretical understanding of these complex featurefe strong stability of the lower-period orbits. The fractal-
and demonstrate that the main features can be understotike structure indicates the nonperturbative nature of the in-
from two important aspects of Ed4). First, each of the stability in nonlinear lattice$?
stable periodic orbits of the corresponding discrete nonlinear It is also interesting to see that the period-three and -four
mapping possesses a stable basin and these basins form tireits actually cross from one side of the stop band to the
dominant tongue and fractal-like structures. Second, thether in the negative Kerr nonlinear coefficient media. The
spectrum and the stability bounds of Ed) control the over-  stability of the orbits apparently decreases when approaching
all shape of the transmission region. We shall also provide athe center of the stop band, leaving the bridging incomplete.
intuitive mechanical analogy that will help understand theWe find when the frequency is in the gap, the trajectories of
appearance of solitons and their trajectories in thgH|) the periodic orbits are sensitive to the form of the initial
plane. condition in the mapping. This clearly indicates the impor-
tance of the physical boundary conditions. The use of
A. Nonlinear mapping vacuum as an embedding medium for the nonlinear system
. : . . makes some of the phase space directly accessible to real
Equation(4) can be viewed asa no_nllnear dlscreFe map a%xperiments, the gap region in the negative Kerr case being a
foIIows.iXVe wntg the complex .fleIcE in polar coordinates: good example. This part of the phase space would not be
En=rqe'™. The integral of motion for Eq(4) becomes relevant to the electron case if latticgather than a vacuum
6) were used outside the nonlinear system. In this case, one can
study the region only by treatin@ and k as independent
representing physically the conservation of current, whereariablest?
Ab6,=6,—6,_,. We introduce new dynamical variables:

J=r,r,_1Sin(A6,),

un=rﬁ andv,=Jcot(A 6,). We then obtain, from Eq4), B. Spectra bounds
the co'grgespondlng area-preserving nonlinear discrete map- A spectrum bound can be obtained in a mean field fashion
ping S: ) -4 _
by linearizing Eq.(4):
u _1=i(v2+\]2) |2 cok— aksink(1+\|E(|?)|<2. (8)
Sy Uy " : (7)
Uno1=—0n—Un_1(AeUp_1+ Q) This bound is placed on solutions with a uniform field am-

plitude throughout the structure. Although in our system no
where ()= — (2cok—aksink) and A=A aksink. The start-  solutions of this type can exist due to interferences of the
ing point of the mapping isuo,vo) = (|E(|%|E|*co%), ob-  transmitting and the scattered waves by the surfaces at the
tained from the physical boundary condition Ed). two ends of the structure, E@8) nevertheless provides a
Starting from an arbitrary point in thek(|E|) plane, the  reasonable bound for stable transmission as shown in Fig. 4.
mapping generated by E(f), in general, will exhibit stable, This bound atE,=0 coincides with the bound of a linear
unstable, or even chaotic trajectories. Stable and unstablgsectrum for a periodic Kronig-Penneg+function model.

orbits correspond to passing and nonpassing regions of thequation(8) has simple physical solutions close ke mar.
phase diagram, respectively. The unstable orbit diverges gspr \ >0,

n decreases, producing an exponentially large value of the
required input amplitude and equivalently, an exponentially

small transmission for a finite input amplitude. Chaotic or- o~ for k~0

bits, characterized by irregular field amplitude and phase as a |E/|2< 9)
function of n and extreme sensitivities to initial conditions, for ke mar+ &

are also found between the dominant tongues of transmis- amm\d ork=ma-o.

sion.

The initial condition that corresponds to stable periodicFor A <0,
orbits can be obtained by iterating E) from the starting

values (i5,vo) and demanding that the solution be periodic 1+a )
with periodp. We have explicitly computed these curves for m(l— k?/6) fork~0
several lower period orbitg(up to 4; see Appendjxand the |E,|?< (10

results are shown as solid and dashed lines in Figs. 1 and 2. E

These curves clearly trace the dominant tongues of the trans- A

1)
+—) for k=mam+ 6.
Mo
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5 e , : ing in a centrifugal field. The coordinateis identified as the
(a) v Spectrum Bound time variablet and the field amplitude as the distance
4 3 ~ — -Stability Bound ] Within this mapping, the stability of the solution really
\ -----Stability Bound 2 k . . X
means the particle will not go to infinity asymptotically.
E 3t 1 Close to the “effective” band edge where the mean field
¢ solution ise’®", the mapping,
2 1
E, for K~2mm
1r ] F(t=n)= 11
( ) (-1"E, forK=(2m+1)m, (1)
%0 2.0 transforms Eq(4) into the differential equation,
Wave vector k
2.0 . . . : A d2F
(b) 7 W+c1F+c2|F|2F=o, (12
15L gl .
- wherec;=2 (1% cok)*aksink, c,=* aksink, and the up-
E 10L---- - 1 per (lower sign is taken foK =2m= [K=(2m+1)7].
t Identifying n with t andF with re'?, the above equation
describes the motion of a unit mass particle in a potential
05k ¢ ]
pectrum Bound
— — -Stability Bound V(r)=3cqyr?+ ter (13
‘0 i 1 ! ! ! !
00 05 1.0 15 20 25 3.0 with a conserved angular momentum
Wave vector k
zd‘9 2
FIG. 4. The spectrumiEq. (8)] and stability bound$Eqs. (18) L=r T E;sink (14)

and(19)] in the first band for a nonlinear superlattice with a positive
(&) and a negativeb) Kerr coefficient. and total energy
2 2

+ = +V(r). (15

the different responses at low frequencies between the posi- Etot:§ 212

tive and negative Kerr media. For positive Kerr media, the
critical field amplitude to suppress transmission diverges athe radial part of the motion is governed by
the bottom of the bands, while for negative Kerr media, it is
finite. (See Figs. 1 and RPhysically, the overall suppression
of transmitting regions for positive Kerr media is due to the Ver(r) = 501f2+ Zczr4+ 572 (16)
increased contrast between the effective dielectric constant

of the nonlinear and linear layers, and at the same time, This mechanical analogy is very appealing and intuitive.
decreased stability, as the field intensity increases. Since th® similar analogy exists for a dispersive nonlinear ffim.
nonlinearity is modified by the? prefactor, the suppression When c,>0, all solutions of Eq(12) are stable. However,

is the weakest at low frequencies. In contrast, for negativevhenc,<0, the stability of the solution requires the particle
nonlinear media, the bound is severe at low frequenciessounded within the local minimum. Noticing the effective
while it is less below the bottom of the upper band. Forpotential can be expressed as a function of intensity
negative Kerr media, increasing intensity has the effect of =|F|? only,

shrinking the stop band. The competition between the in-

The spectrum bound analysis helps the understanding of 1(dr
dt

2

creased transmission bandwidth, on the one hand, and the 1 1, | 2sirPk
decreased stability, on the other, makes the phase diagram Ver(1)=5Cal + 7 Col "+ ——, (17)
quite complex. Notice in Fig. 2 the appearance of passing
regions just below the upper band edge. the condition for the stability is thedV.4/d1<0, i.e.,
C. Mechanical analogy and stability bound Et2<m (18

c
The previous subsection focused on the spectrum bound ca

assuming a uniform amplitud®loch-like) solution that pro-  This bound is shown in Fig. 4, together with the spectrum
vides a rather reasonable gualitative understanding of the sthound for both the positive and negative Kerr media, ob-
bility boundary found numerically. In actual calculations, thetained by solving Eq(8). It is clear that the stability condi-
amplitude varies as one moves along the structure. In thion places a stronger bound than the spectrum bound and is
section, we shall see that better bounds can be obtained if wgenerally in better agreement with the phase diagrams pro-
examine the stability of these solutions under the assumptioduced with numerical solutions of E¢).

of a slowly varying field. Under such conditions, the problem A second bound can be obtained by requiring that the
of solving the coordinate-dependent field intensity can beparticle be confined within the local minimum of(r)
mapped to the classical dynamics problem of a particle movaroundr =0 (for ¢;>0 andc,<0). This condition is satis-
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Ty Trprrerer

fied when the total energy is less than the maximum of the 0.4
I Soliton Profile |

potential barrier. Taking into account thét/dt=0 att=0,
the condition is then

o numerical
analytical 7

0.3 —
Venl10= g1 (19 Em), :

This bound(shown in Fig. 4 as stability bound or positive i
Kerr media is in much better agreement with the numerical 01
phase diagram, Fig. 1. '

i 1

D. Gap solitons oL S ]
0 10 20 30 40 50 60 70 80

The existence of stationary soliton solutions in the forbid- n
den region of the linear system can also be understood
through the mechanical analogy. A soliton is a localized ex- FIG. 5. Single-soliton profile in a nonlinear superlattice with a
citation, which, strictly speaking, does not radiate in an infi-negative Kerr coefficientN=80 anda=0.35. The circles are the
nite lattice. In the mechanical picture, this is possible onlynumerical values and the solid line is the analytical results(Zg).
when the total angular momentum is close to zero. The par-
ticle starting withr =0 and moving in the potential will be equal amplitude. When exactlilg solitons are confined
reflected by the potential barrier at large and the time within the structure, the resonant inp(egnd output field
dependence of the coordinateproduces precisely the en- amplitude is given by a simple relation,
velop profile of a soliton. Solving the differential equation

[Efq. (12|)] with E;=0 yields a single-soliton solution in an 2 15 VE n ) o1
infinite lattice, Ei=\/———=Sech——|. 1
t —\lcy| € 2Ns¢
2 1 n . . P
F(n)=\/——F—~=Sech -], (200  These trajectories are shown in Fig. 6 Mg up to 5 and
—Megl € § should be compared with the numerical results shown in Fig.
where the extension of solitafi= 1/\/m_ 3. Given the approximate nature of the analytical solutions,

A simple physical picture can dispel the apparent myster;}he_ overall agreement with the numerical calculation is quite
associated with the formation of the stationary soliton. Thesat|sfactgry. , . .
soliton forms only within the otherwise nonpassing region. Equation(11) clearly shows no soliton solution exists for

In the forbidden region, the wave amplitude can be exponer0Sitive Kerr media in thé-function model. In fact, this is a
tially increasing or decreasing with and we reject the ex- consequence of thé&-function approximation. In this model,

ponentially increasing solution, because it is not physicalfor positive nonlinearity and as the field strength increase's,
However, in a nonlinear medium, the effective stop-band!€ UPPer band edge moves away from the frequency, while
width depends upon the field intensity. When the fieldth® lower band edge of the next band is fixedammar. Not
strength increases exponentially from a starting small valu@n!y does the stop band never close as the field strength
as one enters the nonlinear system from outside, the effectiJ8Creases, but it actually widens. As a result, gap solitons
stop-band narrows and eventually closes. The field will theff@nnot form in thes function model when the nonlinearity is
behave as if it is propagating within the pass band and starf0Sitive. For nonlinear layers of finite width, soliton solu-
to oscillate. But as soon as the field strength falls to a valudOns do exist for both positive and negative Kerr media,
such that a gap opens and the frequency is once again in tfR¢cause both band edges shift with intensity. This is in
gap, the field begins to decrease exponentially. The overafidreement with the conclusion of Chen and Mills/ho
shape of the field thus shows the localized structure of a

soliton. 0.10
The analytical solution for the soliton profile compares .

well with the numerical results. An example is shown in Fig. 0.08 I

5 for a system exactly at resonanc&=(1) with N=80, I

a=0.35 and a frequency just above the top of the first band 0.06 |-

and field strengtlE,=0.000 035. The phase of the soliton E

. . . . t

field (not shown is almost a constant, except in the tail part 0.04 |

where coupling between the soliton and the outside environ-

ment began to have an effect. We have checked that the 002 L

soliton extension is independentBf, but the peak position

of the soliton moves away from the center of the structure as 0.00 L

E; departs from the resonant field amplitude. 20 24 26 28
Resonance transmission is achieved via the formation of Wave vector k

solitons which, in turn, couple to the incident and output

field. Resonance occurs when the tail of the soliton exactly FIG. 6. Multiple-soliton trajectories from the analytical predic-

matches the input and the output field at the surfaces witlion [Eq. (21)] for the same system of Fig. 3.
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0.15 — 1.0
N=80

0.05

0.00

FIG. 7. Transmission curve of a typical bistable system. Notice
regions with three output solutions for the same input. The part with
a negative slope is unstable. The switch up and switch down occur
as indicated by the arrows.

found solitons at the upper edge for positive Kerr media and

at the lower edge for negative media. 056 ®) N
Finally, we note that other types of nonstationary solitons

may exist in the gap of a Bragg reflector. These solitons can 0.4

propagate with a velocity between zero and the average ’ E

speed of light in the medium and exhibit relativistic 15 N :

behavior?1516 N=80
k=4.5

o=0.35

IV. BISTABILITY AND SWITCHING THRESHOLD 1.0F A=1 z 3

In this section, we focus on the bistability and multista- E
bility induced by the periodic modulation of nonlinear me-
dia. Bistability is said to occur when the system has two 0.5 =
output states for the same value of input over some range of
input values. Which state of these possible outputs the sys- (©
tem follows depends upon the detail history and dynamics of 0.0 . :
the input. As an example, the input-output characteristics of 0 1 2
anN=80 system with the frequency inside the second trans- 0
mission band show the generic characteristics for an optical
bistable systentFig. 7). This curve is obtained by varying FIG. 8. Typical transmission characteristics when the frequency
E,. The part of the curve with a negative slope is unstableis inside the transmission ban@) Transmission coefficient vs out-
and the arrows indicate the actual path that the system také@$t field amplitude;(b) transmission coefficient vs input field am-
in response to an increasing or decreasing input field. Thalitude; and(c) output field amplitude vs input field amplitude.
hysteresis loop is a signature of the bistable response. Abotice th(_e extreme optical limiting as evidenced by the plateau
important quantity is the switch-up and -down intensity thatStructure in(c).
measures the energy it takes to operate the switch. To
achieve low switching threshold in application, both shift, which changes the interference pattern and hence the
switch-up and switch-down intensity are required to be low.transmission coefficient. To accumulate over the entire
In the nonlinear wave propagation problem that we aresample a phase shift of the ordermfrequired for switching,
considering, bistability occurs quite generally when theboth the field strength and the length of the sample must be
transmission coefficient is strongly modified by the field in-large. This is illustrated in Fig. 7 and in the low field part of
tensity. We classify the bistability into three categories ac+igs. 8a)—8(c). The switch-up and switch-down intensities
cording to the way they occurl) bistability within the are generally of the same order of magnitude. The switching
transmitting regions(2) bistability between the tongues, and intensity varies as the inverse of the total length of the struc-
(3) bistability via soliton formation(only for A<<O in our ture if absorption is neglected.
mode). Two typical responses are shown in Figs. 8 and 9, The second class of bistability occurs when the field in-
respectively, for frequencies inside and outside the transmigdensity crosses from one tongue to anottese Figs. 1 and
sion band. 2). Figure 8 shows the modulation of the transmission coef-
The bistability within the transmitting band operates ex-ficient when the outpufFig. 8@)] or the input[Fig. 8b)]
actly with the same principle as the nonlinear Fabry-Perofield amplitude is increased. Notice the existence of a non-
devices! The modulation of the dielectric constant by the passing region T=0) in the middle in Fig. &). The two
field inside the nonlinear medium produces an extra phaseutput states are characterized by being at different transmis-
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output field amplitudés; . The resonance transmission at low

1.0 g ' A field amplitude is a result of soliton and soliton-train forma-
N=80 | tion. The single-soliton and two-soliton transmission charac-
038 k=24 1 teristics are shown in Figs(19 and(c). Notice the extremely
0=035 small values of the switch-down field. In fact, the switch-
T 0.6 ] down field decreases exponentially with the system size and
is given by Eq.(20). The reduced threshold is due to the
04 p concentration of energy on localized areas. This attribute is
02 1 extremely advantageous for highly nonlinear systems with
’ (a) absorption, for example, semiconductor nonlinear materials
0.0 . ‘ . in the vicinity of the electronic band edge. Unfortunately, at
o 0.5 1 L5 2 the switch up between the different soliton transmission
E, states, the transmission is extremely low. Hence, the
10° ' switch-up field is very highinot shown in Fig. &)].
All the experiments on distributed feedback structures
I have been done utilizing the first class of bistability. As we
w0tk remarked before, the second class bistability requires large
T nonlinearity and are not suitable for switches. However, it
can be used very well for optical limiting. The third class
102 L bistability apparently has the promising advantage of an ex-
tremely low switch-down threshold. However, there are sev-
(b) eral di_fficulties with this type of bistability. Thg no.nIinea.r
e L effgct in most of the mate_rlals saturates at high intensity.
0 0.005 0.01 0.015 Th_|s may h|r_1der the_ formation of gap solitons, because their
existence still requires a large nonlinear effect at the peak
() — o positions. Moreover, effective coupling between the incident
o4 Neso wave and the gap soliton could be a problem, due to the
02035 A=_1 sensitivity to the precise value of the input to achieve reso-
103 L i nance, as the size of the system is necessarily large for low
threshold applications.
Et
10" . V. CONCLUSIONS
In conclusion, we have investigated the propagation of
" © 1 EM waves in a superlattice of layered structure with an

intensity-dependent dielectric constant. The transmission
diagrams in the frequency-amplitude plane exhibit interest-
ing and complex tongue structures, due to the increasing in-
stability induced by the the periodic modulation of the inten-
FIG. 9. Typical transmission characteristics when the frequenc)sity' For positive Kerr media, the transmission is Severely
is in the stop band(a) Transmission coefficient vs output field syppressed away from the bottom of the band. For negative
amplitude;(b) transmission coefficient vs input field amplitude; and Kerr media, transmission within the stop band is possible
(c) output field amplitude vs input field amplitude. Notice the loga- ith increasing intensity. Moreover, soliton solutions exist
rithmic scale in they axis in (b) and (©). within the stop band, and through coupling, resonance trans-

sion tongues. Because the crossover between the tongues @ission can be achieved. These complex responses are ex-
curs only when the nonlinearitjor the scaled field strength Plained by analyzing the spectrum bound and stable periodic
E) is of the order of one, the switch-down intensity is muchorbits of the corresponding nonlinear mapping. Utilization of
larger as compared with that of the first class. The switchSolitons to confine energies within small localized areas can
down intensity cannot be reduced by increasing the size dfeduce the switching threshold to a value that is reachable
the structure. Moreover, since the instability in the nonpasswithin the currently available radiation intensity. However,
ing region is strongest with a diverging rate of ex{¥3the seyeral dlfflcultl_es must be overcome before one can build
plot of E, vs E, shows plateau structurgsig. 8(c)]. Similar ~ Switches operating under soliton resonance transmission con-
behavior was observed in a previous study of the electrofitions, as discussed in Sec. IV.

transmission in nonlinear latticé$ Therefore, the switch-up

intensity can be or_ders of me}gnitu{je fact, exponentially ACKNOWLEDGMENTS

larger than the switch-down intensity.
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APPENDIX A x=—Q. (A2)

In this appendix, we give the equations satisfied by thg-g, the period-three orbit,
lower periodic orbits of the mapping E¢) with the starting
point (ug,vo) = (|E?* |Eq|*cok). We introduce new vari-  x54 4ax*+ (4a2+ 2b)x3+ (4ab+ Q)x2+ (2aQ + b?— 2)x
ables O=—(2cok—aksink), A.=Naksink, and x
=\¢E{% The trajectories for the periodic orbits satisfy the +(2a+Db)x=0. (A3)
following equations.

For the period-one orbit,

x=—(2+Q). (A1) f2—(xf?+ Qf—x—a)?—sirtk=0, (A4)

For the period-four orbit,

For the period-two orbit, wherea=Q + cok, b=a?+sir?k, andf(x)=x2+2ax+b.
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