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Calculation of optical transport and localization quantities
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By combining a coherent-potential approximation with our previous work on localization, we cal-
culate the mean free path /, the diffusion coefficient D, the localization parameter kI, where k is the
renormalized wave vector, the localization length L., and other related quantities. Our results for D
near the critical regime are in surprisingly impressive agreement with recent experimental data by
Drake and Genack in a sample of titania spheres in air. Our calculations indicate that optical local-
ization can be experimentally realized by either lowering the concentration of the titania spheres or
lowering the standard deviation of the radii distribution.

The question of optical or, more generally, classical
wave localization (CWL) has been examined!? both ex-
perimentally’ ™% and theoretically.’~!! Until recently,
there was no conclusive evidence supporting the proposal
that CWL is indeed possible in disordered systems
characterized by a positive-definite random dielectric
function. Recently, Soukoulis et al. 12 studied the ques-
tion of CWL in a lattice model by employing a reliable
numerical technique; they found that localization does
indeed take place in their model, and they argued that
CWL is more easily attainable in a realistic system of
spheres of dielectric constant €, >0 randomly embedded
in a host material of dielectric function €,(0<e¢; <€,)
rather than in their discrete numerical tight-binding
model. In the same work,!? a coherent-potential approxi-
mation (CPA) was developed which is equally applicable
to scalar or vector wave equations and which is almost
free from spurious multiple solutions and other related
misbehaviors quite common when simple CPA is applied
to continuum models. This CPA combined with the
potential-well-analogy (PWA) approach!® to the localiza-
tion problem yields results consistent with the numerical
data in the regime where the latter are relevant, i.e., for
not so high w and x (o is the frequency and x is the
volume fraction occupied by the spheres).

In a recent paper Drake and Genack!* reported mea-
surements of the optical diffusion coefficient D and ab-
sorption time in a sample of closed-packed titania spheres
[(;)/2=2.2] of average radius @=3000 A in air
[(€))'”?=1]. They found values of D as low as 1.45X 10*
cm?/sec showing clearly that the critical regime very
close to localization has been reached for the first time.

In this Brief Report, we report theoretical results based
on our simple CPA (Ref. 12) and the PWA (Ref. 13) for
values of the parameters pertinent to the Drake and
Genack experiment.!* Our simple CPA replaces the ran-
domly varying dielectric function e(r) [e(r)=¢, for r in-
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side a titania sphere and €;=1 outside] by an effective,
complex, uniform €, from which an effective propagation
constant g = (€, )12 /c is defined, where c is the velocity
of light. The quantity €, is determined by the condition
(C ) =0, where ImC is the total cross section (TCS) times
Reg /4m. This TCS is associated with the scattering in-
duced by the replacement of €, within a sphere by either
€, or €;. The average is over these two possibilities and
over the distribution of sphere radii, if any. The TCS is
defined as the total normalized flux of the outgoing spher-
ical wave just outside the sphere plus the normalized ab-
sorption (if any) within the sphere minus the normalized
“‘absorption” of the incident wave of propagation con-
stant g within a sphere of equal size.’> The CPA equation
(C)=0 was brought to the form ¢,.,=¢q,+ A4(C),
where g, =[(E —2,)2m /#*]'/%, X is the self-energy, n is
the order of iteration, and A is chosen using the weak
scattering limit and demanding as good a convergence as
possible. We used 4 =3/2q, and the CPA equation was
solved numerically by iteration, which in almost all cases
converged to a unique solution. Once g has been deter-
mined, one can find immediately the mean free path
1=0.5/Imgq, the renormalized wave vector kK =Regq, the
dimensionless localization parameter kI, the effective
phase velocity v =w/k, and the Boltzmann diffusion
coefficient Dy =1vl. In this formula, / is supposed to be
the transport mean free path, /., which is defined as the
length over which momentum transfer becomes uncorre-
lated. This is different from scattering mean free path
which describes the decay length of the single-particle
Green’s function. The two mean free paths are related by
I, =(1—cos0)! in the most simple circumstances. Here
we have used that [, =1, which is certainly not true for
the p-spherical harmonic Mie resonance. Using these
CPA results, one can obtain various localization quanti-
ties on either side of the critical point by employing the
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PWA expressions.!> These simple approximation expres-
sions have been checked successfully up to now against
various numerical data. According to the PWA the criti-
cal point, i.e., the so-called mobility edge, where localiza-
tion just sets in, is given by!?

(kl),=0.844 . )

It is convenient to define ¢=(k/)?/(0.844)%. We have
then for ¢ > 1 (i.e., on the extended side)*?

D=D,f" !, )

where f=1+6/¢(¢—1), D is the diffusion coefficient,
and f ! is its reduction factor due to amplitude fluctua-
tions which eventually may lead to localization. Besides
D, another quantity that can be measured directly experi-
mentally is the quasi-one-dimensional localization length
L , in a wire of cross section 4 made from our composite
material and surrounded by a perfectly reflecting wall:

_ A
La 4.82¢ °

where &, the correlation length, is given by £=2.72If /¢.
On the localized side (¢ < 1) the localization length L, is
given by!?

L,=1(2.2+14.124)/(1—¢) .

In Fig. 1, we plot our result for D, kl, I, and L ,/ A4
versus A, /@ (Ay=21y/V €, where A, is the wavelength in
vacuum) together with the experimental data from Ref.
14. All the parameters in our calculations are fixed
by the experimental conditions (€,=1, €,=4.84,
a=3000 A, o,/@=0.29, where o, is the standard devia-
tion of the radii distribution assumed rectangular'®). The
only parameter which is not known accurately is the
sphere volume fraction x. Due to the way the sample was
prepared, it is reasonable to assume that we have random
close packing. For spheres of equal size, random close
packing corresponds!’ to x =63.7%. In the present case
where there is large variation (o, /@ =0.29), we expect
that x will be appreciably larger than 63.7%. We found
that the results depend rather sensitively on x (for x in
the range 50—75 %) and that x =73% fits the experimen-
tal data well, as can be seen from Fig. 1. Such an agree-
ment is really impressive given the absence of free param-
eters in our theory and the simplicity of our CPA. In this
connection, it is worthwhile to point out that one would
expect that our CPA would given an optimum x for lo-
calization, X opts lower than 0.50. The reasons are that (i)
our CPA treats the 4 and B components completely
equivalently, and (ii) a B sphere in an 4 host is a more
efficient scatterer than an A sphere in a B host. On the
other hand, preliminary results'® for a periodic arrange-
ment of spheres show that scalar waves are subject to
strong multiscattering processes near the position of the
second / =2 and the third / =1 Mie resonances even for
as high an x as 0.74.

It is rather surprising that the single-sphere Mie reso-
nant scattering is the dominant scattering factor in con-
centrations as high as 0.74. A possible explanation'® for
this dominant role of the single sphere may be associated

(3)

with its spherical symmetry. Indeed, the spherical
scatterers as opposed, e.g., to the cubic scatterers cannot
form new well-connected shapes by clustering together.
Thus, new cluster resonances cannot easily appear. This
geometric -effect is also related to the fact that nonover-
lapping spheres cannot form percolating channels even in
the closed-packed limit of x=0.74, while for other
geometries a percolation channel opens up for x =0.15.
It is, therefore, the persistence of the dominant role of the
single scatterer, even for high x, that makes the CPA ap-
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FIG. 1. (a) Diffusion constant (102D /c@, where c is the veloc-
ity of light) and the localization parameter k/, (b) mean free path
l/@and L 4/ A as a function of the wavelength A,/a, for a sam-
ple of tinania spheres (€,=4.84) in air (¢;,=1). The concentra-
tion of spheres is x =0.73, while the standard deviation of the
sphere radii distribution is o, /@ =0.29, where a is the average
radius of the spheres. The squares with error bars represent the
measured experimental data of Drake and Genaek for the same
set of parameters. The dashed line represents the value
kl=0.844, which is the critical value of localization. The ar-
rows d, and p, on the A,/@ axis represent the positions of the
second resonances of the / =2 and / =1 components, respective-

ly.
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proach reliable. Thus, in the absence of a direct calcula-
tional test of the CPA at such high volume fractions x, it
is not clear whether the CPA tends to overestimate x
or, more generally, whether the CPA results are as accu-
rate as their agreement with the experimental data is sug-
gesting. At the point A,/@=1.7]1, the value of kl is 1,
i.e., very close to the critical value (0.844) for localization;
the mean free path is / =0.19X 3000 A=570 A, close to
the estimate given in Ref. 14; the reduction factor is
f7!=0.176; and the renormalized phase velocity is
1.84 X 10 m/sec=0.615¢, where c is the velocity of light.
The localization that was almost observed at A,/a~1.7
is due to the combined effect of the second resonances of
the /=1 and / =2 components. The positions of these
resonances, denoted by p2 and d2, respectively, are
shown in Fig. 1. As can be seen from Fig. 1, we have
specific predictions for the quasi-one-dimensional locali-
zation length L , as a function of the wavelength A,/a.
These predictions can be tested experimentally.

In Fig. 2, we plot our calculated values for D and k! for
the same parameters as before except x, which is now
taken to be 60%. We see that the second resonances, p2
and d2, are not now as effective as they were for higher x
(the minimum at A,/@=1.7 disappeared), while the
lowest (i.e., the first) resonances of [ =1 and / =2 charac-
ter (denoted by pl and d1, respectively) now produce
strong effects. Indeed the p1 is responsible for the true
localization for 3<A,/@ <3.6 and the d1 for the local
minimum at A,/a@ =2.4. The minimum value of the lo-
calization length is obtained at A,/@=3.45 and is equal
to 6.6a; the corresponding values of / and v are 0.3@ and
0.89c; respectively. The results shown in Fig. 2 are im-
portant because they suggest that true localization can be
observed in a system of polydisperse titania spheres in
air. What is needed is to lower the volume fraction of the
titania spheres (this can be achieved by diluting them
with spheres of dielectric constant equal to 1) and choose
their average radius and the wavelength so that
A,/@=3=%0.5. Our calculations also show that it is possi-
ble to obtain localization for a given concentration x by
decreasing the width of the distribution of the sphere ra-
dii. As o, decreases, we observe strong variations of D,
kl, and other transport quantities as a function of the
wavelength. In particular, for x =0.60 and o, /@=0.05,
we obtain localization not only at A,/@=3.0, but also
around A,/a@ 2.0, which is close to the p2 resonance.
The same is true for x =0.73 and o, /@ =0.05, where we
obtain localization at A,/@ =2.3, which is close to the d1
resonance, as well as at A;/a@=1.5, which is due to the
d2 resonance.
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FIG. 2. Diffusion constant (10°D /ca@) and the localization
parameter kl as a function of the wavelength A,/a for a sample
of tinania spheres (€,=4.84) in air (¢,=1). All the parameters
are exactly as those in Fig. 1 except that x =0.60. The arrows
d,, p,, dy, and p, in the A, /@ axis represent the positions of the
second and first resonances of the / =2 and / =1 components,
respectively.

In conclusion, we have calculated, through a well-
converged CPA, different transport quantities for elec-
tromagnetic waves, such that D, [, kl, L., and L ,/ A
agree very well with the experiment of Drake and
Genack. This is so, provided that the one free parameter
of our theory, the concentration x of the titania spheres,
is 73%. Our theory predicts that true localizations can
be achieved with a sample of titania spheres in air provid-
ed that either the sphere concentration x is lowered by
about 15% or the standard deviation of the radii distribu-
tion o, /a is lowered to about 5%. Although the impres-
sive agreement of our CPA results with the experimental
data makes our method a serious candidate for obtaining
reliable quantitative results, it will nevertheless, be very
interesting to check the CPA results for the EM case
against more reliable numerical techniques, as has been
done for the scalar wave equation.'?
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