RAPID COMMUNICATIONS

PHYSICAL REVIEW B

VOLUME 33, NUMBER 10

15 MAY 1986

Quantum oscillations in one-dimensional metal rings: Average over disorder
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We study the Aharonov-Bohm effect in single normal-metal rings and show that averaging the transmis-
sion coefficient T over disorder gives oscillations with a period of a half-flux quamtum. As the elastic
scattering gets stronger, the periodicity of oscillation of the conductance, which is related to T, gradually
changes to a full-flux quantum, in agreement with recent experiments.

There have been intense theoretical and experimental ef-
forts in recent years to understand the behavior of conduc-
tance of normal-metal conductors at low temperatures.
Magnetoresistance oscillations of Aharonov-Bohm effect
type in disordered rings and cylinders with flux period hc/2e
were first predicted by Al'tshuler, Aronov, and Spivak
(AAS),! and have been verified experimentally for disor-
dered cylinders by several groups.2-> Experiments on small
rings, on the other hand, showed complicated features. Un-
til recently, no periodic oscillations had been clearly ob-
served in single-metal rings. However, Webb, Washburn,
Umbach, and Laibowitz® have observed signals of oscilla-
tions with period Ac/e in small gold rings, and very recently
Chandrasekhar, Rooks, Wind, and Prober’ have unambigu-
ously observed hc/2e oscillations at low magnetic fields and
weaker hc/e oscillations at higher magnetic fields, on single
aluminum and silver rings.

The AAS theory, which predicts hc/2e oscillations that
decay rapidly at high fields, is based on the weak-
localization theory of the ensemble-averaged magnetoresis-
tance.! Carini, Muttilab, and Nagel’ have also predicted
hc/2e oscillations and argued that the origin of these oscilla-
tions of the conductance could be traced to the existence of
degeneracies and time-reversal invariance of the Hamiltoni-
an after ensemble averaging. An alternative approach,'®12
based on calculating the transmission coefficient, gives a
fundamental period of Ac/e in rings at zero temperature.
Although higher harmonics do exist, they become dominant
only at special conditions and are not equivalent to the effect
predicted by AAS.! No ensemble average is taken in this
theory.!®!2 It was suggested'>!® that hc/2e contribution
could become dominant in the multichannel case due to the
random contribution associated with flux-independent
phases. In addition, in very small samples there is the extra
complication of aperiodic fluctuations added to the magne-
toresistance.'*

In the present paper, we will first give an explicit formula
of the transmission coefficient, which is related to the con-
ductance by Landauer’s formula,!'? for a symmetric

normal-metal ring. Then we will show that in the weak-
|
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scattering limit the conductance is a periodic function of the
flux through the hole in the conductor with the hc/2e
period after averaging over the phases of the scatterers. We
will also show that increasing scattering will destroy the
hc/2e oscillations, and the period will change to hc/e, in
agreement with the latest experiments.’

Following Biittiker, Imry, and Landauer,!! we describe a
metal ring by two effective parallel elastic scatterers with
two leads. The leads can be described by an S matrix which
relates the amplitudes of the three incoming waves to the
three amplitudes of the outgoing waves. The matrix S has
to be unitary and symmetric due to the physical requirement
of probability conservation and time-reversal invariance. A
simple choice that S is real and symmetric with respect to
the two branches of the circle is given by!!
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where a = [(1—2€)/2—11/2, b=[(1—-2¢)/2+1]/2, and e,
I<e< a’[, is called the coupling constant, since e=0 and
e=%— correspond to decoupling and strong coupling of a
ring with leads, respectively. Scatterers are described by a
transfer or ¢ matrix. Since we consider a one-dimensional
system, the ¢ matrix is given by
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Here ¢ = T,/2¢'* is the transmission amplitude of the scatter,
T, the transmission probability, and ¢ the phase change in
the transmitted wave. The reflection amplitude of the
scatter is given by r = R,/2e/%e /"2 Generally,  and r are
functions of electron energy, magnetic field, and disorder of
the metal. Following the formalism developed by Biittiker
etal.,'' the total transmission coefficient is obtained as a
function of magnetic flux ®, T;, and phases ¢; and ¢, for
the two branches of the ring. We find that the total
transmission coefficient T is given by T = |a; |2, where a3 is

az
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® is the magnetic flux through the hole and ®¢= hc/e is the flux quantum. We immediately see from Eq. (3) that the
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transmission coefficient T is a periodic function of flux with a period of the flux quantum hc/e. These results are in agree-
ment with those of Refs. 10 and 12. Equation (3) can be simplified a lot if we approach the weak-scattering limit where
T, =1 for the two scatterers in the branches of the ring, while the phase changes in the transmitted waves in the two scatter-

ers are ¢, and ¢, respectively. In this limit, the total transmission coefficient is given by

e[sin¢; + sin’g; + 2 sing; sing; cos2a (&/dg) ]

T=la;|*=

For ¢;=¢2, Eq. (4) agrees with the Eq. (4.25) of Ref. 11,
which has been studied very carefully and always shows a
periodicity of full flux. We see, from Eq. (4), that for a sin-
gle configuration of the disordered ring in the presence of
magnetic field, the transmission coefficient T will always be
a periodic function of full flux at zero temperature. Howev-
er, if we average over the disorder equation (4) we might
obtain the half-flux oscillation as was speculated.!l!> Note
that in the weak-scattering limit 7,=1 only ¢, and ¢, are
randomly distributed with a rectangular probability distribu-
tion between 0 and 27. In the weak-scattering limit, this is
shown to be true'’ for the one-dimensional Anderson model
with diagonal disorder. Therefore, in this regime, averages
over the phases ¢, and ¢, must be taken, and the macro-
scopic properties of the sample are the ensemble-averaged
quantities. We use uniform phase distribution. Hence, the
geometric average of the total transmission coefficient is
given by

(T)g=elmD (5a)
where
2w p1 g
(InT) = (2;)2L doy [, deaInT (T, 61, 6., ®) .
(5b)

We also calculate the arithmetic average of T which is a
direct average of T in Eq. (5b). T, in Eq. (5b), can be tak-

FIG. 1. ®,/2 oscillations of the geometric average of the total
transmission coefficient for different degrees of coupling for weak
scattering Tg=1.
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en either from Eq. (4) or Eq. (3). For Ts=1, Eq. (5b), to-
gether with Eq. (4), indeed shows that such an average over
disorder will change the period to hc/2e. This can be seen
clearly from the relation

T(Ts=1,¢1,02,6P+D)/2)=T(Ts=1,¢,+7,d5,¢€,P) ,

6
hence, (6a)

(TYo+o,2=(T) o - (6b)
This is correct for the geometric as well as the arithmetic
average of the transmission coefficient T for Ts=1. The
geometric average (T), of T for different coupling con-
stants e is plotted in Fig. 1. The striking feature is that
(T),/€ is extremely insensitive to changes of the coupling
constant. From Fig. 1 we clearly see that T is a periodic
function of half-flux quantum ®,/2. As a comparison, we
plot in Fig. 2 the arithmetic average (T), of the total
transmission coefficient 7T as a function of the flux through
the hole of the ring. In this case too, the period of oscilla-
tion of (T), is half-flux quantum, but (T),/e* does
depend on the coupling constant e.

Similar oscillations have been seen in the work of Carini
et al® for the participation ratio. Our results suggest that
the ensemble-average picture presented in Ref. 9 and the
perturbation theory of AAS' and Bergman® is not so dif-
ferent from that expressed in the transfer matrix picture,
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FIG. 2. ®,/2 oscillations of the arithmetic average of the total
transmission coefficient for different degrees of coupling for weak
scattering Tg=1.
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provided an ensemble average over disorder is taken. It is
very interesting that if we average total transmission coeffi-
cient T over the phases ¢; and ¢, [Eq. (3)] when T, <1,
we find that (T), and (T), are not periodic functions of
half flux anymore, but of full flux. This is clearly shown in
Figs. 3(a) and 3(b), where (T),/€? and (T),/€ are,
respectively, plotted as a function of magnetic flux through
the hole of the ring for =4 and different values of T,.

By carefully examining Figs. 3(a) and 3(b), we notice that
the transmission coefficient has a full-flux oscillation, but
there is also an appreciable component of a half flux. The
oscillations of the transmission coefficient in Fig. 3(b) are
very similar to those seen in Fig. 1(c) of Ref. 9 for small
size rings, for the participation ratio. They interpreted® their
numerical results as half-flux oscillations because their
time-reversal-symmetry arguments will persist for any size
system. Most astonishing is our result that even after en-
semble averaging for T, < 1, the transmission coefficient is
periodic in Ac/e. Although the results are not periodic with
period hc/2e, there is also a significant decrease in the
transmission coefficient for half-integer values of ®/®, [see
Fig. 3(b)]. The general philosophy in this field is that en-
semble averaging Kills the Ac/e. We believe that this state-
ment might indeed lack precision; presumably, it depends
on the ensemble average being considered. Expressed oth-
erwise, ensembles which are not ‘‘wild”’ enough might not
be sufficient to lead to the self-averaging of the hc/e com-
ponent. The important question then is what is a physically
relevant ensemble, i.e., which ensemble incorporates the
variations from member to member which we would expect
in a real system? In this work as an ensemble average we
take that one, in which the distribution of phases is uni-
form. We know that this is true for the weak-scattering lim-
it,15 but it is possible that the distribution is no longer uni-
form for strong disorder, and this might be the reason for
differences between our results and those of Ref. 9. Note
that as 7T, decreases from the value one, which corresponds
to the weak-scattering limit, the period of oscillation of
(T), and (T), gradually shifts towards the full-flux quan-
tum. So for the strong-scattering case, i.e., T, << 1, the
hc/ e period would become dominant. This is simply related
to the fact that the hc/2e period oscillation involves back-
scattering interference® in which electrons effectively circle
around the ring twice. Therefore, for the strong-scattering
case, electron waves would be greatly attenuated and phase
coherence around the whole ring would almost be lost, and
the contribution with the hc/e period would be observed. It
can be argued that as the magnetic field is increased, the
transmission amplitude 7, of the scatterer will be decreased,
and therefore (T), or (T), will show full-flux quantum
oscillations in agreement with experiments’ which study the
magnetic field dependence of T. Very recently, Stone and
Imry'® have argued that increasing temperature will cause
single-ring self-averaging; the flux periodicity of the magne-
toresistance oscillations becomes kAc/2e. Of course, at zero
temperature with no self-average, the oscillations are of the
hc/ e type.

To summarize, we have shown that the transmission
coefficient of a normal-metal ring with contacts will oscillate
as a function of the magnetic flux with a period of half-flux
quantum in the weak-scattering case. For the strong-
scattering case full-flux quantum oscillations are dominant.
All of these results are correct for zero temperature. To
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FIG. 3. Average of the total transmission coefficient as a func-
tion of magnetic flux through a hole for different T for e=%. (a)
Geometric average (T),. (b) Arithmetic average (T),.

make a comparison with the experimental results®’ we have
to define the important characteristic lengths and discuss
their dependence on temperature, disorder, and magnetic
field. One is the electron-phase coherent length /, which is
the distance that an electron travels before randomly chang-
ing its wave-function phase. [ is, roughly speaking, the
mean freg path which for a typical metal’ is of the order of
10-100 A and independent of temperature. The inelastic
diffusion length is /= (D7), where D is the diffusion
constant (assumed to be temperature independent) and 7,
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is the mean time between inelastic collisions. It is expected
that 7, is inversely proportional to the temperature. /i, can
be larger than 1 um at low temperatures (1 um= 10 A).
The localization length [, has to be of the order of /i, if one
wants to see these electron interference effects. Finally, the
magnetic length is Iy ~ (hc/eWH), where H is the applied
magnetic field and W the width of the sample. The ratios of
these lengths to the sample length L governs the size (or
the presence) of the oscillations. The condition for observ-
ing the Aharonov-Bohm effect with half-flux quantum in
disordered rings is that /iy~ /.~ Iy = L >> I, where L is
the perimeter of the ring. This has to be distinguished from
Aharonov-Bohm resistance oscillations in very pure single
crystal with a long mean free path / >> L and with a period
of hc/e. In the disordered ring, the oscillations with half
flux will gradually give way to hc/e oscillations as we in-
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crease either the magnetic field or the disorder. In these
two cases /. or /y will decrease and phase coherence around
the whole perimeter of ring L will be destroyed, including
the hc/2e oscillation. This picture agrees with the experi-
mental results.” Finally, by increasing the temperature, /i,
decreases and eventually will become smaller than L/2.
This phase incoherence introduced by increasing the tem-
perature will destroy both the periods of oscillations of the
magnetoresistance.
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